
 

 

 

 
 
IMPLICATIONS OF MULT-CORE ARCHITECTURES ON THE 
DEVELOPMENT OF MULTIPLE INDEPENDENT LEVELS OF 
SECURITY (MILS) COMPLIANT SYSTEMS 
 

UNIVERSITY OF IDAHO 
 
OCTOBER 2012 
 
FINAL TECHNICAL REPORT 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
 
 
 
 

STINFO COPY 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

 
 
 
 
 
 
 
 
 

AFRL-RI-RS-TR-2012-252 

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND  



 

 

NOTICE AND SIGNATURE PAGE 
 
 
Using Government drawings, specifications, or other data included in this document for any purpose 
other than Government procurement does not in any way obligate the U.S. Government. The fact that 
the Government formulated or supplied the drawings, specifications, or other data does not license the 
holder or any other person or corporation;  or convey any rights or permission to manufacture, use, or 
sell any patented invention that  may relate to them.  
 
This report is the result of contracted fundamental research deemed exempt from public affairs security 
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy 
clarification memorandum dated 16 Jan 09.  This report is available to the general public, including 
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC) 
(http://www.dtic.mil).   
 
 
 
AFRL-RI-RS-TR-2012-252   HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN 
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
FOR THE DIRECTOR:  
 
 
 / S /        / S / 
 
WILMAR W. SIFRE      PAUL ANTONIK, Technical Advisor 
Work Unit Manager      Computing & Communications Division 
        Information Directorate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 
 



 

 

 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection 
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports, 
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, 
Paperwork Reduction Project (0704-0188) Washington, DC 20503. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

OCT 2012 
2. REPORT TYPE 

FINAL TECHNICAL REPORT 
3. DATES COVERED (From - To) 

MAR 2010 – APR 2012 
4. TITLE AND SUBTITLE 
 
IMPLICATIONS OF MULT-CORE ARCHITECTURES ON THE 
DEVELOPMENT OF MULTIPLE INDEPENDENT LEVELS OF 
SECURITY (MILS) COMPLIANT SYSTEMS 

5a. CONTRACT NUMBER 
FA8750-10-2-0134 

5b. GRANT NUMBER 
N/A 

5c. PROGRAM ELEMENT NUMBER 
33140F 

6. AUTHOR(S) 
Jim Alves-Foss, Paul Oman, Ryan Bradetich, 
Xiaohui He, Jia Song 

5d. PROJECT NUMBER 
MILS 

5e. TASK NUMBER 
UI 

5f. WORK UNIT NUMBER 
01 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of Idaho 
Center Secure and Dependable Systems 
875 Perimeter Drive, MS  1008 
Moscow, Idaho 83844-1008 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 
 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Air Force Research Laboratory/RITA 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSOR/MONITOR'S ACRONYM(S) 
N/A 

11. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

AFRL-RI-RS-TR-2012-252 
12. DISTRIBUTION AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed 
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and 
AFRL/CA policy clarification memorandum dated 16 Jan 09.   
13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
This report summarizes the findings of the University of Idaho, Center for Secure and Dependable System's 
study entitled ``Implications of Multicore Architectures on the Development of Multiple Independent Levels of 
Security (MILS) Compliant Systems'' The purpose of the project is to investigate the security ramifications of 
various modern microprocessor security architectures in the context of support for MILS compliant systems. 
This report is divided into three main parts, each of which consists of one or more sections. Part I of this report 
consists of the introduction and summary of the project. Part II presents a discussion of a framework for 
evaluating information flow in multicore processors. Part III provides a detailed description of the hypervisor 
we developed as part of this project to enable experimental evaluation of the Intel processor. 
15. SUBJECT TERMS 
Multi-core processors, Multi-level security, MILS, Multiple Independent Levels of Security 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
 

SAR 

18. NUMBER 
OF PAGES 
 

239 

19a. NAME OF RESPONSIBLE PERSON 
WILMAR W. SIFRE 

a. REPORT 
U 

b. ABSTRACT 
U 

c. THIS PAGE 
U 

19b. TELEPONE NUMBER (Include area code) 
N/A 

           Standard Form 298 (Rev. 8-98) 
  Prescribed by ANSI Std. Z39.18 



 

Abstract 
 

This report summarizes the findings of the University of Idaho, Center for Secure and 
Dependable System's study entitled “Implications of Multicore Architectures on the 
Development of Multiple Independent Levels of Security (MILS) Compliant Systems.” The 
purpose of the project is to investigate the security ramifications of various modern 
microprocessor security architectures in the context of support for MILS compliant systems. 

 
Designers of multicore architectures provide many options for bundling resources in the chip 

package. Simple architectures put multiple cores on a single chip to share bus interfaces and/or a 
common cache. System-on-a-Chip (SoC) and System-in-a-Package (SiP) designers choose to 
integrate additional functionality (e.g., audio and video, encryption engines, analog-to-digital 
converts, etc.) into the single chip package. As the communication complexity increases between 
different resources in a chip package, multicore designers continue to look at new methods to 
increase parallelism and scalability. The Network-on-a-Chip (NoC) method attempts to solve 
these problems by emulating a modern telecommunications network in a single chip package. 

 
As with any new innovation, security architects and analysts must review the security 

ramifications of multicore architectures. For example, what new communication channels are 
present in the multicore architecture and what safeguards are available to protect those 
communication channels? It is not readily apparent that existing multicore architectures maintain 
proper information flow isolation so as to enable an implementation of secure systems; but 
single-core information flow identification and evaluation methods do not scale well to modern 
multicore architectures. 

 
This report is divided into three main parts, each of which consists of multiple sections. Part I 

of this report consists of the introduction and summary of the project. 
 
Part II presents a discussion of a framework for evaluating information flow in multicore 

processors. This framework is the final culmination of this project in that it is an outgrowth of 
the lessons learned through the analysis we have performed. This report applies the framework to 
the Cell Broadband Engine Architecture (CBEA), Freescale P4080, and the Intel i7 Nehalem. In 
our analysis we have found that there are many useful security features in the most recent 
multicore processors; however, there are known problems and many unknowns that increase the 
risk when these processors are used in a full multi-level secure environment. 

 
Part III provides a detailed description of the hypervisor we developed as part of this project 

to enable experimental evaluation of the Intel processor. We found that review of the literature 
and design documents of the processors analyzed in Part II is insufficient to determine the 
viability of these processors in an MLS or MILS environment. Additional experimentation is 
needed to determine the impact of the security features and possible vulnerabilities with those 
features. 
 

Part IV includes appendices and references. 



i 

TABLE OF CONTENTS 
List of Figures .......................................................................................................................... vi 
List of Tables ......................................................................................................................... viii 
 Introduction and Background ................................................................................................ 2 1
1.1 Introduction ............................................................................................................... 2 

1.2 MILS ......................................................................................................................... 2 

1.2.1 MILS Principles ................................................................................................. 3 

1.3 The tasks ................................................................................................................... 5 

 Introduction ............................................................................................................................ 8 2
2.1 Why use Multicore Architectures for Secure Systems ............................................. 9 

2.2 Project Objectives ................................................................................................... 10 

2.3 Part II Overview ...................................................................................................... 12 

 Analyzing Multicore and Virtual Machine Architectures ................................................... 13 3
3.1 The Basics of Single-core Information Flow Analysis ........................................... 13 

3.2 A Historical Review of Multicore Architectures .................................................... 15 

3.2.1 From Unicore to Multicore Architectures ....................................................... 15 

3.3 Virtual Machine Monitor Architectures.................................................................. 20 

3.4 Evaluating Multicore and Virtual Machine Vulnerabilities.................................... 21 

3.5 Concerns about Information Flow Analyses of Multicore and Virtual Machine 
Architectures ............................................................................................................................. 22 

 Defining a Framework for Multicore Information Flow Analysis ...................................... 23 4
4.1 A Hypothetical Reference Architecture .................................................................. 23 

4.2 Applying the Framework to the Reference Architecture ........................................ 26 

4.2.1 Identify Hardware Components ....................................................................... 26 

4.2.2 Information Flow Analysis .............................................................................. 26 

4.2.3 JTAG Debug Port ............................................................................................ 30 

4.3 Framework Benefits, Advantages, and Value......................................................... 35 

 Revisiting CBEA Using the Framework.............................................................................. 37 5
5.1 Identify Hardware Components .............................................................................. 37 

5.1.1 Synergistic Processor Element ........................................................................ 37 

5.1.2 Element Interconnect Bus ................................................................................ 41 

5.1.3 Cell Broadband Engine Interface Unit ............................................................ 41 

5.1.4 Memory Interface Controller ........................................................................... 42 

5.1.5 Pervasive .......................................................................................................... 42 

5.1.6 Hardware Component List............................................................................... 43 



ii 

5.2 Identify and Evaluate Information Flows ............................................................... 44 

5.2.1 Synergistic Processor Element ........................................................................ 45 

5.2.2 Element Interconnect Bus ................................................................................ 49 

5.2.3 Cell Broadband Engine Interface Unit ............................................................ 50 

5.2.4 Memory Interface Controller ........................................................................... 51 

5.2.5 Pervasive .......................................................................................................... 52 

5.3 Applying the Security Policy .................................................................................. 53 

5.4 Conclusions ............................................................................................................. 54 

5.5 Framework Enhancements ...................................................................................... 54 

 Evaluating Freescale P4080 using the Framework .............................................................. 55 6
6.1 Identify Hardware Components .............................................................................. 55 

6.1.1 Processor Cores ............................................................................................... 56 

6.1.2 CoreNet ............................................................................................................ 58 

6.1.3 DDR2/DDR3 SDRAM Controller ................................................................... 59 

6.1.4 Enhanced Local Bus Controller ....................................................................... 59 

6.1.5 High-Speed Peripheral Interface Complex ...................................................... 59 

6.1.6 Data Path Acceleration Architecture: .............................................................. 60 

6.1.7 Real Time Debug: ............................................................................................ 68 

6.1.8 Hardware Component List............................................................................... 69 

6.2 Identify and Evaluate Information Flows ............................................................... 69 

6.2.1 Processor Core ................................................................................................. 69 

6.2.2 CoreNet Coherency Fabric .............................................................................. 85 

6.2.3 CoreNet Coherency Cache .............................................................................. 86 

6.2.4 Enhanced Local Bus Controller ....................................................................... 86 

6.2.5 Data Path Acceleration Architecture: Individual Components ....................... 87 

6.2.6 Data Path Acceleration Architecture: Grouped Components .......................... 89 

6.2.7 On-Chip Network: Individual Components .................................................... 90 

6.2.8 On-Chip Network: Grouped Components ....................................................... 92 

6.2.9 Real Time Debug ............................................................................................. 93 

6.3 Applying the Security Policy .................................................................................. 93 

6.4 Conclusions ............................................................................................................. 94 

 Evaluating Intel Nehalem Architecture Using the Framework ............................................ 95 7
7.1 Identify Hardware Components .............................................................................. 96 

7.1.1 Processor Cores ............................................................................................... 96 



iii 

7.2 Identify and Evaluate Information Flows ............................................................... 97 

7.2.1 Processor Cores ............................................................................................... 97 

7.3 Applying the Security Policy ................................................................................ 101 

7.4 Conclusion ............................................................................................................ 102 

 Conclusions and Future Work ........................................................................................... 103 8
8.1 Conclusions ........................................................................................................... 103 

8.2 Future Work .......................................................................................................... 104 

8.3 Contributions......................................................................................................... 104 

 Introduction ........................................................................................................................ 107 9
9.1 Motivation ............................................................................................................. 107 

9.2 Research Challenges ............................................................................................. 109 

9.3 Contributions......................................................................................................... 110 

9.4 Part III Overview .................................................................................................. 111 

 Background ...................................................................................................................... 112 10
10.1 MultiCore Architecture Terminology ................................................................... 112 

10.2 Overview of Multicore Processors Architectures ................................................. 113 

10.3 Virtual Machine Monitor ...................................................................................... 115 

10.3.1 CPU Virtualization ........................................................................................ 116 

10.3.2 Memory Virtualization .................................................................................. 117 

10.3.3 I/O Virtualization ........................................................................................... 119 

10.3.4 Interrupt Virtualization .................................................................................. 120 

10.4 Related Work ........................................................................................................ 121 

10.4.1 Previous Hypervisors ..................................................................................... 121 

10.4.2 Security Challenges in Multicore Systems .................................................... 122 

10.4.3 Security Architecture Model ......................................................................... 123 

 Evaluation of Hardware Features for Security in Multicore Systems ............................. 125 11
11.1 CPU ....................................................................................................................... 125 

11.1.1 Sensitive but Unprivileged Instructions ........................................................ 127 

11.2 Memory ................................................................................................................. 129 

11.2.1 Extended Page Table and Nested Page Table ............................................... 129 

11.2.2 Shared Memory ............................................................................................. 130 

11.3 I/O Devices ........................................................................................................... 131 

11.4 External Interrupt .................................................................................................. 132 

11.5 Secure Bootup ....................................................................................................... 132 



iv 

11.6 Virtualization of System Resources ...................................................................... 133 

11.6.1 State of the Logical Processor ....................................................................... 133 

11.6.2 Virtualization of System Facilities ................................................................ 134 

11.7 Hardware Virtualization Technology Summary ................................................... 134 

 A Lightweight Virtual Machine Monitor for Secure Analysis of Multicore Architectures12
..................................................................................................................................................... 136 

12.1 Bootstrapping ........................................................................................................ 136 

12.1.1 AP Booting Procedure ................................................................................... 137 

12.2 Operating Modes ................................................................................................... 138 

12.3 Memory Layout .................................................................................................... 139 

12.3.1 Memory Layout in Single VM System.......................................................... 140 

12.3.2 Memory Layout in Multiple VM Systems .................................................... 141 

12.4 IAVMM Paging System ....................................................................................... 143 

12.4.1 Host Page Tables ........................................................................................... 144 

12.4.2 Extended Page Table ..................................................................................... 144 

12.5 VM Launching Process ......................................................................................... 146 

12.5.1 VMM Setup ................................................................................................... 146 

12.5.2 Handling of Guest VM Launching ................................................................ 147 

12.6 Handling of VM Exits ........................................................................................... 147 

12.7 Summary ............................................................................................................... 148 

 Evaluation Experiments in Multicore Systems ................................................................ 149 13
13.1 Evaluation of CBEA Processor Architectures ...................................................... 149 

13.1.1 A Security Review of the CBEA ................................................................... 149 

13.1.2 Evaluation of Shared DRAM System in CBEA ............................................ 150 

13.1.3 Discussion ...................................................................................................... 152 

13.2 Evaluation of Intel 64 Hardware Features based on IAVMM .............................. 152 

13.2.1 Systematic Evaluation ................................................................................... 152 

13.2.2 Instruction Case Studies ................................................................................ 153 

13.2.3 Covert Channels Analysis ............................................................................. 159 

13.2.4 Memory Access Discussion........................................................................... 160 

13.2.5 System Registers Analysis............................................................................. 161 

13.2.6 VM Exits........................................................................................................ 162 

13.3 Summary ............................................................................................................... 163 

 A Layered Framework for Secure Multicore Architectures ............................................ 164 14
14.1 Security Policy Terminology ................................................................................ 164 



v 

14.2 3-Level Security Framework ................................................................................ 165 

14.3 Examination of Hardware-Level Security Mechanisms ....................................... 167 

14.3.1 Secure Hardware Mechanisms of Intel VT-x ................................................ 167 

14.4 VMM-Level Security Mechanisms....................................................................... 169 

14.5 Verification Experiments from User-level Security Mechanisms ........................ 170 

14.5.1 Access Control Security ................................................................................ 170 

14.5.2 Protection Page Tables .................................................................................. 170 

14.6 Summary ............................................................................................................... 171 

 Formalize Security Policy for Multicore Architectures ................................................... 172 15
15.1 Background ........................................................................................................... 172 

15.1.1 Layer Assurance Architectures ...................................................................... 172 

15.1.2 Security Architecture Models ........................................................................ 173 

15.1.3 Perfect Security Property ............................................................................... 174 

15.2 Formal Model of Virtual Machine Systems.......................................................... 175 

15.2.1 Formal Model of Virtual Machine Systems .................................................. 175 

15.2.2 Event System Model ...................................................................................... 178 

15.3 Example Layered Assurance................................................................................. 181 

15.3.1 Hardware Layer ............................................................................................. 182 

15.3.2 VMM Layer ................................................................................................... 183 

15.3.3 User Layer ..................................................................................................... 183 

15.3.4 More Specific Examples ................................................................................ 184 

15.4 Summary ............................................................................................................... 185 

 Part III Conclusion and Future Work............................................................................... 186 16
16.1 Conclusion ............................................................................................................ 186 

16.1.1 Summary of Part III of this project ................................................................ 186 

16.2 Future Work .......................................................................................................... 187 

 Bibliography .................................................................................................................... 190 17
 Acronym List ................................................................................................................... 200 18

Appendix A. CBEA SPPORT DATA ................................................................................ 206 

Appendix B. P4080 Support Data ...................................................................................... 212 

Appendix C. List of Instructions that Cause VM Exits...................................................... 219 

Appendix D. Intel Instruction Summary ............................................................................ 221 

Appendix E. A List of Terminology Comparison between Intel and AMD ...................... 224 

Appendix F. A List of Virtualized Resource...................................................................... 225 



vi 

LIST OF FIGURES 
 
Figure 1: Secure Multi-Level Communication System, Implemented using Guarded 
Communication Subsystems ..................................................................................................... 4 
Figure 2: Pentium II Block Diagram ...................................................................................... 15 
Figure 3: Pentium D Block Diagram ...................................................................................... 16 
Figure 4: Core 2 Duo Block Diagram ..................................................................................... 17 
Figure 5: CBEA Processor ...................................................................................................... 17 
Figure 6: TILE64 Processor .................................................................................................... 18 
Figure 7: Intel Core i7 Processor ............................................................................................ 19 
Figure 8: P4080 Processor ...................................................................................................... 19 
Figure 9: Reference Architecture Block Diagram .................................................................. 23 
Figure 10: Extended Reference Architecture Block Diagram ................................................ 31 
Figure 11: Reference Architecture Block Diagram for First Security Policy ......................... 32 
Figure 12: Reference Architecture Block Diagram for Second Security Policy .................... 34 
Figure 13: CMOS 90 nm Cell Broadband Engine Block Diagram ........................................ 38 
Figure 14: SXU Block Diagram ............................................................................................. 39 
Figure 15: MFC Block Diagram ............................................................................................. 40 
Figure 16: CBEA spider network ........................................................................................... 53 
Figure 17: P4080 Architecture ................................................................................................ 55 
Figure 18: DPAA Block Diagram........................................................................................... 61 
Figure 19: DPAA BM Block Diagram ................................................................................... 62 
Figure 20: DPAA QM Block Diagram ................................................................................... 63 
Figure 21: DPAA FM Block Diagram .................................................................................... 64 
Figure 22: DPAA PME Block Diagram ................................................................................. 65 
Figure 23: DPAA SE Block Diagram ..................................................................................... 66 
Figure 24: Security Mode State Machine ............................................................................... 68 
Figure 25: Simplified Real Time Debug Block ...................................................................... 69 
Figure 26: Processor Privilege Levels .................................................................................... 96 
Figure 27: ICR Register .......................................................................................................... 97 
Figure 28: MDR Register Format ........................................................................................... 99 
Figure 29: SIPI Attack ............................................................................................................ 99 
Figure 30: Overview of multicore processor architectures ................................................... 114 
Figure 31: Page Translation Mechanisms ............................................................................. 119 
Figure 32: Interaction between Virtual Machine Monitors and guests ................................. 126 
Figure 33: State of VMCS and VMX Operation .................................................................. 127 
Figure 34: Intel's EPT and AMD's NPT Mechanisms .......................................................... 129 
Figure 35: CBE System Memory Map ................................................................................. 131 
Figure 36: Application Processor Startup Procedure ............................................................ 138 
Figure 37: Global Descriptor Table in IAVMM ................................................................... 138 
Figure 38: Memory Layout of IAVMM ............................................................................... 140 
Figure 39: Memory Layout in Multicore Systems ................................................................ 142 
Figure 40: Memory Translation from a VMM2 Viewpoint.................................................. 142 
Figure 41: Memory Translation of EPT from a GVM2 viewpoint ....................................... 143 
Figure 42: Linear-Address Translation to a 2 MB page using IA-32e paging (Intel). ......... 144 
Figure 43: The procedure to create EPT ............................................................................... 145 



vii 

Figure 44: A DRAM Bank .................................................................................................... 151 
Figure 45: Access execution time (μs) to shared memory when running multiple SPEs 
concurrently .......................................................................................................................... 151 
Figure 46: IAVMM traces CR information while launching a mini_guest .......................... 154 
Figure 47: The formats of CR0 and CR4 .............................................................................. 162 
Figure 48: 3-Level Security Policy Framework for Multicore Architectures....................... 166 
Figure 49: Assurance architecture of the multicore system .................................................. 166 
Figure 50: Standard Commuting Diagram for Implementation Correctness ........................ 180 
Figure 51: Layered Policy and Implementation Models....................................................... 181 
Figure 52: Event Procedures of a VM Exit Example ........................................................... 184 
 



viii 

LIST OF TABLES 
Table 1: Evaluated Assurance Level Time and Cost ................................................................ 9 
Table 2: Reference Multicore Architecture: Registers ........................................................... 24 
Table 3: Reference Multicore Architecture: Core Instructions ............................................... 25 
Table 4: Reference Multicore Architecture: Registers ........................................................... 25 
Table 5: Reference Multicore Architecture: Widget Extension Instructions .......................... 26 
Table 6: Reference Multicore Architecture: Initial Hardware Components ........................... 26 
Table 7: Reference Multicore Architecture: Analysis Results for Communication Bust 
Timing Information Flows (No flows in this case) ................................................................. 27 
Table 8: Reference Multicore Architecture: Core Instruction Set Analysis ........................... 28 
Table 9: Reference Multicore Architecture: Widget Instruction Set Analysis ....................... 30 
Table 10: Security Policy 1: MMU Mappings ........................................................................ 32 
Table 11: Security Policy 1: IOMMU Mappings ................................................................... 32 
Table 12: Security Policy 1: Masked Interrupts .......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 33 
Table 13: Security Policy 1: JTAG Pins ................................................................................. 33 
Table 14: Security Policy 2: IOMMU Mappings ................................................................... 34 
Table 15: CBEA: Hardware Component List ......................................................................... 43 
Table 16: MMIO Memory Map .............................................................................................. 44 
Table 17: SPE Control Instructions ........................................................................................ 47 
Table 18: SPE Channel Instructions ....................................................................................... 47 
Table 19: SPE Compare, Branch and Halt Instructions .......................................................... 48 
Table 20: MFC SR1 Configuration Options ........................................................................... 49 
Table 21: DPAA Terms and Definitions ................................................................................ 60 
Table 22:  Cryptographic Hardware Accelerators .................................................................. 67 
Table 23: P4080: Hardware Component List ......................................................................... 70 
Table 24: Conditional Branch Control Instructions ................................................................ 71 
Table 25: Debug Instructions .................................................................................................. 71 
Table 26: Memory Synchronization Instructions ................................................................... 72 
Table 27: Processor Control Instructions ................................................................................ 72 
Table 28: Load and Store Instructions .................................................................................... 73 
Table 29: Memory Control Instructions ................................................................................. 75 
Table 30: System Linkage Instructions................................................................................... 76 
Table 31: No Information Flow or Externally Visible State Change Register Categories ..... 76 
Table 32: Process Control Registers ....................................................................................... 76 
Table 33: Timer Registers ....................................................................................................... 78 
Table 34: Interrupt Registers .................................................................................................. 78 
Table 35: Guest-mode Mapped Interrupt Registers ................................................................ 79 
Table 36: Software Use Special-Purpose Registers ................................................................ 80 
Table 37: Guest-mode Mapped Software Use Special-Purpose Registers ............................. 80 
Table 38: Core Device Control and Status Register ............................................................... 80 
Table 39: Internal Debug Registers ........................................................................................ 81 
Table 40: L1 Cache: Special Purpose Registers ..................................................................... 81 
Table 41: L2 Cache: Special Purpose Registers ..................................................................... 82 
Table 42: P4080 All IVORs .................................................................................................... 84 



ix 

Table 43: P4080 Maskable IVORs ......................................................................................... 84 
Table 44: DCFG_DEVDISR2 Component Disable Bits ........................................................ 91 
Table 45: VM-execution Controls for local ASIC Access Protection .................................. 100 
Table 46: Corresponding settings for 26 sensitive but unprivileged instructions which cause 
VM Exits in Intel VT-x ......................................................................................................... 128 
Table 47: Summary of HVT Support between Intel VT-x and AMD-V .............................. 135 
Table 48: BIOS-provided available physical RAM E820 ranges (with 4 GB RAM) .......... 140 
Table 49: Different Flags between host/guest page table entries and EPT entries ............... 146 
Table 50: Systematic Features of Various VMMs ................................................................ 153 
Table 51: Selective Exception Bitmap .................................................................................. 156 
Table 52: Protection page table enforced on IAVMM ......................................................... 169 
Table 53: SPE Memory Load/Store Instructions .................................................................. 206 
Table 54: SPE Channels........................................................................................................ 207 
Table 55: SPE Constant-Formation Instructions .................................................................. 208 
Table 56: SPE Integer and Logical Instructions ................................................................... 208 
Table 57: SPE Hint-for-Branch Instructions......................................................................... 209 
Table 58: SPE Shift and Rotate Instructions......................................................................... 210 
Table 59: SPE Floating-Point Instructions ........................................................................... 211 
Table 60: Branch and Flow Instructions ............................................................................... 212 
Table 61: Floating-Point Instructions ................................................................................... 212 
Table 62: Floating-Point Status and Control Register Instructions ...................................... 212 
Table 63: Floating-Point Arithmetic Instructions ................................................................. 213 
Table 64: Floating-Point Compare Instructions .................................................................... 213 
Table 65: Floating-Point Rounding and Conversion Instructions ........................................ 213 
Table 66: Simple Integer Instructions ................................................................................... 214 
Table 67: General Purpose Registers .................................................................................... 215 
Table 68: Floating-Point Registers ....................................................................................... 215 
Table 69: Branch Registers ................................................................................................... 215 
Table 70: Branch Unit Control and Status Register.............................................................. 215 
Table 71: Hardware Implementation Dependent Register.................................................... 216 
Table 72: L1 Cache Registers ............................................................................................... 216 
Table 73: L2 Cache Registers ............................................................................................... 216 
Table 74: MMU Registers .................................................................................................... 217 
Table 75: Performance Monitoring Registers ....................................................................... 218 
Table 76: All the instructions that cause VM Exits .............................................................. 219 
Table 77: Intel Instruction Extension Summary ................................................................... 221 
Table 78: Instructions that may Potentially Cause Vulnerabilities ....................................... 222 
Table 79: Additional Instructions that may Cause Vulnerabilities ....................................... 223 
Table 80: Comparison of Common Terms between Intel VT-x and AMD-V ...................... 224 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
1 

 
 
 
 
 
 
 

PART I   
INTRODUCTION AND  

EXECUTIVE SUMMARY 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
2 

 INTRODUCTION AND BACKGROUND 1
1.1 INTRODUCTION  

This report summarizes the findings of the University of Idaho; Center for Secure and 
Dependable System's study entitled “Implications of Multicore Architectures on the 
Development of Multiple Independent Levels of Security (MILS) Compliant Systems” The 
purpose of the project is to investigate the security ramifications of various modern 
microprocessor architectures in the context of support for MILS compliant systems. 

 
This report is divided into three main parts, each of which consists of multiple sections. Part I 

of this report consists of the introduction. Part II presents a discussion of a framework for 
evaluating information flow in multicore processors. This framework is the final culmination of 
this project in that it is an outgrowth of the lessons learned through the analysis we have 
performed. It also summarizes the reviews of the processors we have looked at. Part III provides 
a detailed description of the hypervisor we developed as part of this project to enable 
experimental evaluation of the Intel processor. 

1.2 MILS 
Modern net-centric concepts are based upon ubiquitous connectivity and standards based 
services. This is, in fact, the basis upon which the Department of Defense Information Enterprise 
Architecture is founded. However, to realize the objective of secured availability requires that 
users and processes with various levels of trust and access share a common infrastructure. The 
emerging state of the art on this type of Multiple Level Security is based upon the MILS 
architecture. This architecture consists of a number of high robust components that when 
combined appropriately can be trusted to enforce two primary principals of Information 
Assurance. 

 
• Information is only shared with those processes and users allowed by policy. 
• Information is not shared with those processes and users disallowed by policy. 
 
In the MILS architecture [AFOTH06, HHOAF05], made popular by the Air Force Research 

Laboratory High Assurance Middleware for Embedded Systems (HAMES) project, multi-level 
secure systems are implemented through separation and controlled information flow. The system 
is built on a foundation consisting of a separation-based infrastructure, the separation kernel (i.e., 
hypervisor) and secure inter-processor communication (i.e., the Partitioned Communication 
Service (PCS)). These components isolate individual applications and services and provide the 
pathways for secure communication. Supporting these pathways are additional components (i.e., 
guards, cross-domain services, encryption engines, routers, etc.) that implement the system 
security policy. One approach to the MILS architecture is to develop a Guarded Communication 
Subsystem (GCS) which is responsible for the “routing” of messages between applications, 
sending them through the appropriate filters, guards and access decision points. 

  
Consider the exemplary system depicted in Figure 1. In this figure, we have three processors, 

each hosting a number of processes. Some of the processes (A, B, D, E and F) are applications 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
3 

that have not been fully analyzed with respect to security, and are thus considered untrusted. 
Assume application A needs to utilize services provided by application F. Requests from A are 
passed through the MILS Message Router (MMR) [HOL+05,ROAF+06]} which first sends the 
message through the appropriate guards (e.g., G1 or G2) and then passes it on to the PCS which 
securely transmits the message to Processor 2 and its MMR. Processor 2 MMR may pass the 
message through Guard G5 first, and then to the F service engine. Along the way the guards may 
accept the message, modify it (e.g., add additional metadata, filter contents) or reject it. 

 
The security policy of the system depicted in Figure 1 includes all of the specifications of 

authorized requests and communication between the untrusted applications. For example, the 
policy can specify the content and format of requests from A to F (A may be running a Secret 
level application). 

 
The security policy can be specified as a conjunction of predicates/operations performed on 

the messages as they travel between the processes. Each guard can be responsible for 
enforcement of one or more aspect of the policy. The system as a whole enforces the totality of 
the policy. 

1.2.1 MILS Principles 
The MILS approach to secure system architecture is based on a set of design principles that can 
be summarized with the following: 

 
Time and Space Separation: The MILS architecture requires that the system be architected as 

a set of functional units, called “partitions” supported by one or more separation mechanisms 
(e.g., separation kernel, partitioned communication system). Each partition represents a well-
defined set of resources and functionality. The MILS separation mechanisms ensure that private 
resources (e.g., memory, I/O devices) of a partition are kept isolated from other partitions; 
including residual data in shared resources, hence space separation. In addition, the execution 
behavior of one partition should not unduly influence the execution of another partition, hence 
time separation. 

 
Controlled Information Flow: The concept of design modularity requires the development of 

multiple partitions with communication between the partitions. The MILS architecture supports 
this with the concept of controlled information flow. The MILS separation mechanisms will 
allow information to flow only along defined communication paths - allowing a controlled 
exception to full data separation. With this controlled flow, system architects can require that 
messages be processed by access guards, information re-graders or other security enforcing 
components. 

 
Separation Security Policy (TIME): The MILS separation mechanisms enforce policies of 

type-safety, infiltration, mediation and exfiltration. Type safety specifies that the data types of 
the information flow mechanisms are preserved (e.g., the controlled information flow will not 
allow overwriting of a bounded buffer). Infiltration specifies that an executing partition is not 
able to read or otherwise be influenced by private data of another partition (or the separation 
mechanism). Exfiltration specifies that private data of an executing partition cannot be written to, 
modify or otherwise influence the private data of another partition. Mediation specifies that an 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
4 

executing partition cannot use private data from one partition to modify or otherwise influence 
private data of another partition. 

 
Reference Monitor (NEAT): MILS separation mechanisms implement the reference monitor 

concepts such that they are Non-bypassable, Evaluable, Always invoked and Tamperproof 
(NEAT). The separation mechanism will always be invoked to control information flow and 
manage access of private and shared data. In addition, the system is implemented such that there 
is no other way to provide information flow or access to a partition's data, except through the 
separation mechanism, hence non-bypassable. To provide high levels of assurance that the 
system correctly implements the TIME security policy, the system must be designed in a manner 
that prevents tampering with the separation mechanism and the mechanism must be simple 
enough to allow for full evaluation. 

1.2.1.1 Multicore MILS 
If we consider the system in Figure 1 in the context of a multicore processor, we can deploy the 
processes (guards and applications) to different cores, or we could even map some of the 
physical processors to cores. In this MILS system, we still need to ensure separation and 
controlled information flow as depicted in the architectural representation of Figure 1. The open 
research question is, “Can we securely deploy MILS systems on multicore architectures?” The 
answer to this question leads to many questions which we address in the specific research tasks 
outlined below. 

 

 
Figure 1: Secure Multi-Level Communication System, Implemented using Guarded 

Communication Subsystems 

 
Commercial multicore architectures provide additional architectural components that 

facilitate and manage the sharing of information between the cores. For example, the Intel family 
of processors differentiates between the BootStrap Processor (BSP) and Application Processors 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
5 

(AP) to enable the BSP to configure and manage the APs after it has configured the rest of the 
system. In the CBEA processor, the PPC core is the primary core and it controls the activities of 
the Synergistic Processing Elements (SPE), configuring their memory management units, 
throughput access to the shared bus, and can start and stop processing on the SPEs. In addition, 
several multicore processors have implemented internal communication buses (Element 
Interconnect Bus on CBEA, QuickPath on Intel and CoreNet on Power PC (PPC)) that facilitate 
transfer of information between cores. Commercial processors also have a variety of memory 
cache configurations (with combinations of both private shared and partially shared L1, L2 and 
even L3 caches on chip). In addition to shared memory, management and communication buses, 
processors such as the CBEA provide a wide range of memory-mapped special purpose registers 
to facilitate programming. All of these components must be addressed with respect to the MILS 
security policies. 

1.3 THE TASKS 
The work in this project was divided into six specific tasks. The first three tasks focused on 
specific microprocessor evaluations while Tasks 4 and 6 focused on recommendations. We 
found, during the course of this work, that it was best to put the analysis into a framework. 
Therefore, Part II of this report focuses on the framework and underlying concepts common to 
this style of analysis, and addresses for Tasks 1 and 3. We found very little difference in the 
analysis of the AMD and the Intel processors, so we did not focus on that processor in Part I. 
During the development of the framework we re-examined prior work we had conducted on the 
CBEA processor, and therefore included that work in this report. As a Power PC based 
processor, we thought the CBEA would have some similarities with the P4080 (another Power-
PC based processor) that would be useful in this analysis. We found some similarities, but many 
more differences. 

 
Task 5 focused on the development of an experimental hypervisor and use of that hypervisor 

in analysis of the Intel processor. Some of this work led to results discussed for Tasks 4 and 6. 
 
Task 1: Investigate multicore architectural features from representative processors specific to 
the Intel family of processors, specifically the Intel i-7 processor. The results of this work are 
presented in Chapter 7, 13 and Appendices C-F. 
 
Tasks 2. Investigate multicores architectural features from representative processors specific 
to the AMD family of processors (instead of the IBM Cell processor as originally planned). 
There is great similarity between AMD and Intel processor families. The analysis of the Intel 
processor applies to AMD with the differences highlighted in the Appendix E. 
 
Task 3. Investigate multicore architectural features from representative processors specific to 
the PPC family of processors, specifically the QorIQ family (P4040). The results of this work 
are presented in Chapter 6 and Appendix B. 
 
Task 4: Develop recommendations on the feasibility of utilizing specific architectural 
components of commercial multicore processors in MILS compliant systems. Part II of this 
report is the results of this part of the work, with formalizations of the work in Part III 
Chapters 14 and 15. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
6 

 
Task 5: Develop prototype software that allows for the development of experimentation with 
security functions of the Intel processor investigated in an earlier task. Part III of this report, 
specifically Chapters 11-13 cover this task. 
 
Task 6: Develop software and configuration solutions, mitigations and guidance information 
regarding selected security concerns uncovered during our investigation. Part II of this report 
covers this material with formalizations of the work in Part III Chapters 14 and 15. 

1.4 CONCLUSION 
In our analysis, we found that each of the processors we examined presents some security 
concerns for MILS processes. There is the potential for covert communication channels in any of 
the processors. In addition, there are so many features, registers and options in these processors, 
that we cannot be sure that any analysis or checklist is complete. We have found errors, 
discrepancies and incompleteness in the written documentation, and others have found flaws or 
undocumented features in the actual processors; all of which can be exploited to break a MILS 
system. Therefore, there is inherent risk in using any of these microprocessors in MILS or MLS 
system. 

 
The CBEA, not a specific focus of this work, cannot be used for MILS work without 

signification additional protections. The synergistic processors can be controlled by the current 
running process, and can be used as avenues of covert channels. 

 
The Intel and AMD families provide additional protections with their support for virtual 

machines, which will be essential for MILS systems. However, there are some instructions and 
modes that allow a VM to impact the rest of the system. Additional experimentation is needed to 
quantify the possible impact of these instructions and modes to determine the security risk for a 
MILS implementation on these platforms. 

 
The P4080 is a very complex processor with over 5000 accessible registers, and is really a 

system-on-a-chip. We found limited documentation on some of these registers (e.g., a register 
mentioned once, in passing, in documentation about a related feature). Although the system 
provides security features, we are concerned that configuration of the system is so complex that a 
comprehensive analysis will not be possible.  

 
  

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
7 

 
 
 
 
 

 
 

PART II 
 

FRAMEWORK FOR EVALUATING 
INFORMATION FLOW SECURITY  
IN MULTICORE PROCESSORS 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
8 

 INTRODUCTION 2
 
Over the past several decades, the semiconductor industry has effectively leveraged Moore's 
Law1 to continually increase the performance of single-threaded processors. Processor designers 
have taken advantage of the increased transistor density to increase the processor clock 
frequency and to add additional hardware components in order to improve instruction-level 
parallelism. Major improvements over these past decades have not been without constraints; 
signal propagation delay, power consumption, and memory access times now limit the scalability 
and performance of uniprocessor architectures [SK09]. Moore's Law continues to hold and with 
the diminishing performance of the uniprocessor architecture the semiconductor industry has 
started integrating multiple processor cores into a single chip. This chip package is commonly 
referred to as a multicore processor. This integration has extended the scalability and capabilities 
of processor architectures in both general purpose and in application-specific markets. 

 
A processor core is an Integrated Circuit (IC) responsible for the reading and execution of 

program instructions. Initially, the semiconductor process improvements kept pace with the 
demand for increased throughput by focusing on clock speeds, execution optimizations, and 
cache sizes. However, reducing the semiconductor process size to add additional gates and 
improving the clock speed no longer sufficiently meets the large-scale processor demand 
[MAL08], so manufacturers have started offering multiple microprocessor cores in a single chip 
package. 

 
Designers of multicore architectures provide many options for bundling resources in the chip 

package. Simple architectures put multiple cores on a single chip and share bus interfaces and/or 
a common cache. System-on-a-Chip and System-in-a-Package designers choose to integrate 
additional functionality (e.g., audio and video, encryption engines, analog-to-digital converters, 
etc.) into the single chip package. As the communication complexity increases between different 
resources in a chip package, multicore designers continue to look at new methods to increase 
parallelism and scalability. The Network-on-a-Chip method attempts to solve these problems by 
emulating a modern telecommunications network in a single chip package. 

 
Multicore architectures provide an overall performance boost by running multiple 

independent processes on the separate cores. However, most software applications will not 
typically see huge performance improvements when run on a multicore architecture. Only well-
written, concurrent (i.e., multithreaded) applications will experience the exponential growth 
potential offered by multicore architectures [Sut05]. 

 
As with any new innovation, security architects and analysis must review the security 

ramifications of multicore architectures. For example, what new communication channels are 
present in the multicore architecture and what safeguards are available to protect those 

                                                 
1 Moore's Law states: “The number of transistors incorporated in a chip will approximately double every 24 

months” [ine11]. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
9 

communication channels? This work presents an information flow security analysis of multicore 
architectures and the effects of multicore architectures in secure systems. 

2.1 WHY USE MULTICORE ARCHITECTURES FOR SECURE SYSTEMS 
The term “secure system” can have multiple meanings. For the purpose of this work, a secure 
system follows the multilevel security requirements outlined in the Bell and LaPadula security 
model [BL76]. Simply stated, the Bell-LaPadula security model protects data confidentiality by 
implementing the no read-up2 and no write-down3 properties. The primary purpose of a secure 
system is to prohibit data tampering and/or data leakage to users who do not have appropriate 
clearances. Secure systems typically run in one of three modes: (1) System-High mode, (2) 
Controlled mode, or (3) Multi-Level Secure (MLS) mode. 

 
System-High mode: 

Secure systems running in this mode require that data of different classifications be kept on 
different computer systems. After this separation, rigorous control of designated clearance levels 
helps restrict access within the systems [Kar05]. Using the National Security Agency/National 
Computer Security Center (NSA/NCSC) Rainbow Book Evaluation methodology [Dep87, 
Dep85a, Dep85b], systems running in System-High mode are typically designated at criteria 
level B1 and below. The B1 evaluation roughly translates to the Evaluated Assurance Level 
(EAL) 4 using the Common Criteria Evaluation and Validation scheme, which supersedes the 
Rainbow Series [Kar05]. 

 
Controlled  mode: 

Secure systems running in this mode require that all users are cleared to some level, but not 
necessarily the highest level for the information stored on the system [Kar05]. These systems 
typically evaluate at B2 under the Rainbow Book Evaluation System, which roughly translates to 
EAL 5 using the newer Common Criteria Evaluation System [Kar05]. 

 
Multi-Level Secure mode: 

Secure systems running in this mode have information at different classification levels and users 
who may not be cleared for all the information [Kar05]. These systems typically evaluate at B3 
or higher under the Rainbow Book Evaluation System, which roughly translates to EAL 6 or 
higher using the newer Common Criteria Evaluation System [Kar05]. The evaluation process 
increases in both cost and time for each assurance level. In 2006, the Government Accountability 
Office (GAO) published a report showing the time and cost for Common Criteria Product 
Evaluation [SC06]. A portion of their conclusion appears in Table 1. 

Table 1: Evaluated Assurance Level Time and Cost 

Assurance Level Cost ($1000s) Time (Months) 
EAL 2 75 - 200 4 - 9 
EAL 3 110-250 7-12 
EAL 4 150-350 9-24 
 
                                                 
2 A subject is prohibited from reading data from a higher security level. 
3 A subject is prohibited from writing data to a lower security level. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
10 

System-High networks became common in the Department of Defense (DoD) [Kar05] due to 
the falling prices of commodity hardware and the high cost of developing and evaluating more 
secure systems. One major disadvantage to this approach is that many DoD offices require four 
or five segregated client systems in order to connect to all of the appropriate networks. To solve 
the multiple client system problems, NSA began investigating methods for consolidating these 
multiple System-High mode systems into a single platform. Multicore architectures provide an 
attractive option for this consolidation by isolating each System-High client in an individual 
core, with the aim of maintaining separation between every security system embedded within 
each core. 

 
The most basic requirement of a MLS system is to prevent users who do not have the proper 

clearance from gaining access to classified information [Kar05]. MILS architectures implement a 
separation kernel to provide isolated partitions within a multicore architecture. As a result, the 
MILS solution can be used to implement MLS information systems using multicore 
architectures. 

 
The University of Idaho Center for Secure and Dependable Systems (CSDS) has a long 

history of research defining and characterizing MILS-compliant systems [AFOTH06, ROAF+06, 
HHOAF05]. The work in this report leverages the CSDS information flow analysis work from 
uniprocessor architectures into a framework analyzing information flow in multicore 
architectures. While the characteristics of MILS systems are well understood, it is not readily 
apparent that existing multicore architectures maintain the proper information flow isolation that 
would enable the implementation of MLS systems in a multicore package. 

2.2 PROJECT OBJECTIVES 
This research is divided into five actionable objectives. The first objective was to leverage 
research on uniprocessor overt and covert communication channel analysis and experiment with 
the Cell Broadband Engine Architecture (CBEA) multicore architecture, a Power-PC based 
multicore architecture. The second objective was to collect the lessons learned from Objective #1 
and create a draft comprehensive framework for overt and covert channel analysis for multicore 
architectures. The third objective was to reanalyze the CBEA using the framework developed in 
Objective #2. The fourth objective was to analyze the Freescale P4080 multicore architecture 
using the framework developed in Objective #2. The framework was then revised into its final 
form as part of this objective. The fifth and last objective was to analyze the Intel Nehalem 
Architecture with the revised framework developed in Objective #4. More detailed descriptions 
follow. 

 
Objective 1: 

The purpose of the first objective was to research overt and covert channel analysis on 
uniprocessor systems and to apply those techniques to a specific multicore architecture. This 
objective required an analysis of different multicore architectures. Initial studies under prior 
research involved an investigation of the CBEA architecture. This architecture provided a rich 
diversity of hardware components, which makes a good platform as a baseline for the draft 
framework that was later developed. As a Power PC based architecture, we felt it also provided a 
good basis for future Power PC multicore research. The initial results of this research were 
published in earlier papers [SHAF10a, Smi10, BOAFS10] and are not repeated here.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
11 

 
Objective 2: 

The second objective was to review and categorize the research performed on the CBEA in 
Objective #1. This objective was divided into two tasks. First, a process was defined to create a 
checklist for all the components needing evaluation in the multicore architecture. Second, a 
general purpose framework for analyzing each hardware component in the checklist was created. 
This general purpose component framework satisfied the following requirements: 

 
1. Identify all areas of interest in the component, 
2. Provide a description for each area of interest (intended for peer-review), 
3. Identify information flows and potential safeguards for each area of interest (this is 

intended for scalability), 
4. Provide an analysis for each area of interest (including any experimental data and code 

required to reproduce), and 
5. Provide the evaluation results for each area of interest. 
 
The result of this objective was a draft framework that provides a complete evaluation for 

overt and covert communication channels in multicore architectures. This framework is robust 
enough to allow multiple evaluators to work in parallel, provides enough detail for peer-review 
and reproducibility, and is robust enough to analyze new or updated hardware components in 
multicore architectures. 

 
Objective 3: 

The purpose of the third objective is to test the draft framework on a known data set. The only 
known evaluation for overt and covert channels in multicore architectures was published as part 
of objective #1. The reanalysis of the CBEA will evaluate the effectiveness and identify problem 
areas in the draft framework. The result of this objective is an organized, peer-reviewable, and 
comprehensive evaluation of the CBEA. The result of this analysis will be discussed Chapter 5. 
The draft framework will also be updated to address any deficiencies and/or to simplify or clarify 
the evaluation process. 

 
Objective 4: 

The purpose of the fourth objective is to test the draft framework on a new multicore 
architecture, the Freescale QorIQ P4 architecture using the P4080 processor. The P4080 
processor is targeted towards embedded networking applications (e.g., routers, switches, etc.) 
and has additional hardware components (e.g., encryption engine, etc.) along with the eight 
processor cores. The analysis of the P4080 processor using the draft framework will evaluate the 
effectiveness and identify problem areas in the draft framework. The result of this objective is an 
organized, peer-reviewable, and comprehensive evaluation of the P4080 processor. The result of 
this analysis will be discussed in Chapter 6. The framework will be reviewed again to address 
any deficiencies and/or to simplify or clarify the evaluation process. 

 
Objective 5: 

The purpose of the final objective is to test the final framework on the Intel Nehalem 
Architecture, using the Intel Core i7 processor. The Intel Core i7 is targeted towards general 
purpose computing. The analysis of the Intel Core i7 will be completed by new multicore 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
12 

architecture evaluators, to ensure both a usable and a robust final framework. The result of this 
objective is an organized, peer-reviewable, and comprehensive evaluation of the Intel Core i7 
processor. The result shall be broken into at least two sections: (1) evaluation of the core 
processor and (2) evaluation of processor extensions. The purpose for the two evaluations is to 
verify the robustness of the framework while they are evaluating architecture updates. The result 
of these evaluations will be discussed in Chapter 7. 

2.3 PART II OVERVIEW 
Chapter 3 provides background information on multi-level security, virtualization, and multicore 
architectures. In Chapter 4 we present a framework for analyzing overt and covert channels in 
multicore architectures. Chapter 5 revisits the Cell Broadband Engine Architecture multicore 
architecture analysis using the framework presented in Chapter 4. Chapter 6 and Chapter 7 
present the evaluation of the Freescale QorIQ P4 Architecture, and the Intel Nehalem 
Architecture. Finally, conclusions and future work for Part II of this report are presented in 
Chapter 8. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
13 

 ANALYZING MULTICORE AND VIRTUAL MACHINE 3
ARCHITECTURES 

 
Analyzing the information flow security attributes of multicore architectures is not as simple as 
conducting multiple single-core analyses because most multicore architectures have onboard 
virtual systems interfacing the application layer with the System-on-a-Chip. This chapter 
presents an overview of the basic process of information flow security analysis on a single-core 
system and then shows how that process must be adapted to the complexities of multicore 
architectures and their onboard virtual machines. A historical review of the development of 
multicore and virtual machines is provided to show the added complexities of these architectures. 

3.1 THE BASICS OF SINGLE-CORE INFORMATION FLOW ANALYSIS 
One of the many characteristics designers of secure systems must consider is how information 
can move through the system. Designers use a security policy model to describe the permitted 
communication channels between the different subjects. In addition to defining the permitted 
communication channels, secure system designers also need to ensure that communication 
channels not permitted by the security policy model do not exist. The Trusted Computer Security 
Evaluation Criteria (TCSEC) Light Pink Book defines a covert channel as: 

 
Given a nondiscretionary (e.g., mandatory) security policy model M and its interpretation 

I(M) in an operating system, any potential communication between two subjects I(Sh) and I(Si) of 
I(M) is covert if and only if any communication between the corresponding subject Sh and Si of 
the model M is illegal in M [Dep93, TGC87]. 

 
Covert channels are categorized by the following three criteria: 
 
Type: 

Covert channels are typically identified as either a storage or timing communication channel. A 
storage covert channel exists when the sender subject Sh is able to directly or indirectly alter a 
storage location where another subject Si is able to directly or indirectly read this storage 
location. A timing covert channel exists when the sender subject Sh is able to modulate its use of 
a resource (e.g., CPU time) and subject Si is able to directly or indirectly observe this resource 
modulation. 

 
Noise: 

Covert channels are also classified as either noisy or noiseless. A covert channel is classified as 
noiseless when the communication channel between the sender subject Sh and receiver subject Si 
is error free. 

 
Aggregation: 

A covert channel where the sender subject Sh uses multiple methods to transmit data to the 
receiver subject Si. Covert channel aggregation may also occur when a sender subject Sh 
communicates with multiple receiver subjects. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
14 

Evaluating the channel noise and aggregation is important to understand the covert 
communication channel capacity. The channel capacity is defined as the number of usable bits 
per second a subject receiver Si can receive from the subject sender Sh. Noisy channels reduce the 
channel capacity, while aggregation increases the channel capacity. Covert channel capacity is an 
important attribute of secure system design, given that covert channels with low channel capacity 
can often be ignored. 

 
The TCSEC Light Pink Book identifies primary methods for analyzing information flow in 

single-core systems: Syntactic Information-Flow Analysis, Shared Resource Matrix 
Methodology, and Noninterference Analysis [Dep93]. 

 
Syntactic Information-Flow Analysis: 

Syntactic Information-Flow Analysis attaches information flow semantics to each statement in 
the formal specification or to each statement in the implementation [Dep93]. Statements such as 
X := Y (denoted as Y → X) cause information to flow from Y to X. Information flows are 
mapped to the security policy to generate flow formulas. These flow formulas must be proven 
correct (usually with the help of a theorem prover) to ensure there are no covert storage channels. 
If the flow formula cannot be proven correct, then further analysis is required to determine if the 
flow is real or a false positive (i.e., false illegal flow). 

 
Shared Resource Matrix (SRM): 

SRM uses a matrix to identify potential covert channels. The SRM analysis method can be 
applied to formal security policies, informal security policies, and source code. The Trusted 
Computing Base (TCB) primitives are presented as rows and the TCB variables as columns. The 
interactions between the TCB primitives and TCB variables are documented in each cell of the 
SRM, using the following codes: 

 
• R - The TCB primitive can be read. 
• M - The TCB primitive can be modified. 
• L - The channel is permitted by the security policy. 
• N - No useful information can be obtained from the channel. 
• S - The sender and receiver is the same process. 
• P - A potential channel exists. 
 
Once the direct interactions have been documented in the SRM, a transitive closure operation 

is performed on the SRM to identify all the indirect interactions. 
 
Non-interference Analysis: 

Non-interference Analysis requires the TCB to be viewed as an abstract state machine. Requests 
to the TCB can be viewed as inputs to the TCB and responses from the TCB can be viewed as 
outputs. Two subjects Sh and Si are said to be non-interfering if and only if the output from Sh 
remains unchanged when all the inputs from Si are eliminated back to the initial state and when 
the output from Si remains unchanged when all the inputs from Sh are eliminated back to the 
initial state. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
15 

3.2 A HISTORICAL REVIEW OF MULTICORE ARCHITECTURES 
Prior to 2003, the traditional methods for boosting processor performance were to increase the 
clock frequency, add high-speed, on-chip cache, and optimize instructions [Sut05]. These 
traditional methods worked for many years until physical issues limited processor clock 
frequencies around 4 GHz in 2003. Although physical issues limited the processor clock 
frequency, the transistor size still continued to shrink. Processor manufacturers introduced 
multicore architectures as the solution to improving processor performance post-2003. Multicore 
architectures capitalized on smaller process sizes and increased transistor counts to provide 
multiple processing cores on a single chip. 

3.2.1 From Unicore to Multicore Architectures 
Figure 2 illustrates the high level features of the Intel Pentium II processor (circa 1997). The 
Central Processing Unit (CPU) core is the heart of the processor where the instructions are 
executed. The Pentium II processor implements a multi-level on-chip cache as part of the 
memory hierarchy to address the speed disparity between the CPU core frequency and main 
memory. The layer 1 cache is segregated into a data cache (L1D) and an instruction cache (L1I). 

 

 
Figure 2: Pentium II Block Diagram 

 
In 2002, Intel introduced Intel Hyper-Threading Technology (Intel HT) into the Intel Xeon 

processor family. Intel HT incorporates Simultaneous Multi-Threading (SMT) into the Intel 
processor architectures. SMT creates two logical cores that run on a single physical core 
[MBH+07]. Each logical core maintains an independent processor state, but they share the 
hardware resources provided by the physical core [MBH+07]. While SMT-enabled processors 
are not true multicore architectures, they are included in this project because many of the same 
security concerns and safeguards apply. For example, the Intel HT implementation in the Intel 
Pentium processor has been shown to be susceptible to covert channel and crypto-analytic side 
channel attacks [Per05]. 

 
In 2005, Intel released the Intel Pentium D processor family and Advanced Micro Devices 

(AMD) released the Athlon 64 X2 processor family. Both of these processor families are 
marketed for general purpose desktop computer systems. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
16 

The Intel Pentium D processor family glues two Intel Pentium 4 cores together into a single 
chip. Figure 3 shows the Pentium D block diagram. Each core has its own private L1 and L2 
caches. Communication between these two cores uses the off-chip Front-Side Bus (FSB) 
[PPPC07]. Most processors in the Intel Pentium D processor family did not support Intel HT. 
The Intel Pentium Processor Extreme Edition 840 is the only processor in this family that 
supported Intel's Hyper-Threading Technology, providing four logical cores on two physical 
cores.  

 
Figure 3: Pentium D Block Diagram 

 
The AMD Athlon 64 X2 processor family was designed specifically for multiple cores in a 

single chip [PPPC07]. Both cores have a private L1 and L2 cache. The AMD Athlon 64 X2 
processor family uses a crossbar for connecting both cores to the on-chip memory controller and 
the Hyper-Transport Bus. This configuration provides inter-core communication at CPU speed 
by keeping all inter-core communications inside the chip [ine09]. 

 
In 2006, Intel released a new multicore architecture family of processors under the Intel 

Pentium Core brand name. This new family of multicore architectures was intended to replace 
the Intel Pentium D processor family with an integrated multicore architecture. 

 
Figure 4 illustrates the high-level features of the Intel Core 2 Duo processor. Fundamentally, 

the Core 2 Duo processor is similar to the traditional single-core processor architecture. The L1 
caches and the Data Translation Lookaside Buffer (DTLB) and the Page Miss Handler (PMH) 
are duplicated for each core. The L2 cache is shared between the two cores. 

 
Also in 2006, a consortium of Sony, Toshiba, and IBM came out with the Cell Broadband 

Engine Architecture (CBEA) (first available for purchase). Two CBEA based products available 
for purchase were: Sony PlayStation 3 and the IBM BladeCenter QS20. 

 
The CBEA provides a single general purpose SMT core, making two logical cores. The 

CBEA also provides specialized cores (typically eight), which are designed for computationally 
intensive tasks. These specialized cores implement a different instruction set from the general 
purpose SMT core. Each specialized core also has its own local memory store. 

 
Each CBEA component seen in Figure 5 is connected via four one-way buses configured in a 

ring. Two of these rings run clock-wise while the other two rings run counter-clock wise. The 
CBEA uses Direct Memory Access (DMA) to move data between the CBEA components. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
17 

 

 
Figure 4: Core 2 Duo Block Diagram 

 
Figure 5: CBEA Processor 

 
The CBEA provides a hardware security architecture where one or more of these specialized 

cores can be put into a secure processing mode [SK09]. When the specialized processing core is 
in the secure processing mode, the hardware isolates the core so that no other core, operating 
system or hypervisor can interrogate the internal state of the isolated core [SK09]. 

 
In 2007, Tilera released the TILE64 embedded multicore processor. The TILE64 multicore 

processor contains 64 independent, general purpose cores. Each core has its own private L1 and 
L2 cache as well as a distributed L3 cache [ine07]. The cores are connected using an intelligent 
mesh (iMesh), which provides extremely low-latency and high-bandwidth communication 
between the cores, memory, and other Input/Output (I/O) cache [ine07]. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
18 

Figure 6 illustrates the high-level features of the Tilera TILE64 processor. Each of the 64 tile 
processors is a full-featured, general purpose Very Long Instruction Word (VLIW) processor 
with integrated L1 and L2 caches. The tile processors are connected in a mesh configuration 
using non-blocking switches. This mesh configuration supports an interconnect bandwidth of 31 
Tbps. Each tile processor can run an independent operating system, or the tile processors can be 
grouped to run a multiprocessing operating system. In addition to the 64 tile processors, this chip 
also includes memory and I/O controllers. 

 

 
Figure 6: TILE64 Processor 

 
In 2008, Intel released a new multicore architecture family of processors under the Intel Core 

i brand name, see Figure 7. The Intel Core i3 processor brand is targeted towards the budget 
market, the Intel Core i5 processor family is target for the mid-range market, and the Intel Core 
i7 processor is targeted towards the high-end processor market. This multicore architecture 
replaces the Front-Side Bus with the Intel QuickPath Interconnect architecture. This architecture 
replaces a shared bus architecture with high-speed, packetized, point-to-point communications 
[pap09]. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
19 

Also in 2008, Freescale semiconductor also released the QorIQ P4080 Communications 
Processor. This processor provides eight Power Architecture cores, each with integrated L1 and 
L2 caches. The QorIQ P4080 Communications Processor also supports a multi-megabyte shared 
L3 cache. The hardware provides acceleration for encryption, regular expression pattern 
matching, and Ethernet packet management [ine]. On-chip components are connected by the 
CoreNet coherency fabric, which manages (1) full cache coherency between the caches and (2) 
point-to-point, concurrent connectivity between the hardware components. This chip is intended 
for embedded systems and includes a variety of memory and I/O controllers. Figure 8 illustrates 
the high-level features of the QorIQ P4080 Communications Processor. 

 

 
Figure 7: Intel Core i7 Processor 

  
Figure 8: P4080 Processor 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
20 

3.3 VIRTUAL MACHINE MONITOR ARCHITECTURES 
Modern computer systems are designed as hierarchies of well-defined interfaces. These well-
defined interfaces facilitate independent subsystem development by both software and hardware 
design teams. Typically, these well-defined layers hide the lower-level implementation details in 
order to reduce design complexity. Virtualization can also take advantage of these well-defined 
interfaces to present the real system as a different virtual system or as multiple virtual systems 
[SN05]. 

 
There are two prominent types of virtualization used in modern computer systems: (1) 

Process Virtualization and (2) System Virtualization. 
 

Process Virtualization is a fundamental concept implemented in multiprocessing computer 
systems such as Unix, Linux, and Windows. In these systems, the memory address space, CPU 
registers, and other hardware resources are virtualized so each process has the illusion that it is 
the only process running on the computer system. 

 
System Virtualization requires a hypervisor or Virtual Machine Monitor (VMM) to virtualize 

the hardware system resources; this will create a virtual environment known as a Virtual 
Machine (VM) [Dou10]. The Virtual Machine provides the illusion of real hardware resources to 
software running inside the virtual environment. This report will only focus on System 
Virtualization. VMMs can be categorized into the following categories: 

 
Classic System VMMs: 

Classic System VMMs run on bare metal with the highest privileges. VMs run with lower 
privileges, allowing the VMM to intercept all VM requests to critical hardware resources. 
VMWare ESX is an example of a Classic System VMM. 

 
Hosted VMMs: 

Hosted VMMs run as an application in the hosting operating system. The VMM relies on the 
hosting operating system to provide access to the underlying hardware devices. VirtualBox and 
VMWare Workstation are examples of Hosted VMMs. 

 
Whole System VMMs: 

Whole System VMMs provide virtualization for systems that are not necessarily instruction set 
compatible with the underlying physical hardware. The VMM translates the VM instruction set 
architecture to the physical hardware instruction set architecture. Whole System VMMs enable 
software applications that are developed for one system to be run on a completely different 
system. In addition, Whole System VMMs can also be used to perform binary translations on 
hardware systems that are not virtualization-friendly. In these cases, the VMM would detect and 
emulate unsafe VM instructions. QEMU is an example of a Whole System VMM [SN05]. 

 
Partitioning VMMs: 

Partitioning VMMs divide a larger physical system into smaller virtual systems. There are two 
partitioning methods: (1) Physical Partitioning and (2) Logical Partitioning. Physically 
Partitioning VMMs provide a high degree of isolation by dividing the hardware components into 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
21 

Virtual Machines. Logical partitioning VMMs better utilize the underlying hardware by time-
multiplexing the underlying hardware resources. 

 
Codesigned VMMs: 

Codesigned VMMs are implemented in hardware for the purpose of translating existing 
hardware instruction set architectures into proprietary instruction set architectures to improve 
specific characteristics of the processor (e.g., power, performance, etc.). The Transmeta Crusoe 
is a well-known example of a Codesigned VMM [SN05]. 

3.4 EVALUATING MULTICORE AND VIRTUAL MACHINE 
VULNERABILITIES 

Goldberg [Gol72] developed a model to determine if a processor architecture would support a 
Virtual Machine Monitor. Goldberg recognized the development of multiprogramming, and 
multiprocessing systems were not available to system programmers whose program must run on 
the bare hardware (i.e., under the operating system). For our framework, the hypervisor (i.e., the 
VMM) plays a critical role in the security of the multicore architecture. Goldberg's research 
provided the foundation for the security analysis of the hypervisor. 

 
Robin [Rob99] used Goldberg's research to analyze the Intel Pentium's capability to support a 

secure VMM. In his analysis, Robin identified 17 instructions that did not meet Goldberg's 
virtualization requirements. These 17 instructions were sensitive and did not cause a trap in the 
processor. 

 
Robin also investigated the VMWare product that acted like Goldberg's Type II VMM on the 

Intel platform. The VMWare product should not have been possible, because of the 17 non-
privileged sensitive instructions. Robin determined that VMWare implements a hybrid VMM, 
which emulates these 17 sensitive instructions in the VMM. 

 
Robin's research provided a guide on how to apply Goldberg's research to uniprocessor 

systems. His research also provided insight into how VMMs could emulate non-privileged 
sensitive instructions. 

 
Douglas [Dou10] describes how processor architectures have evolved to provide VMM 

hardware support. In Douglas' research, he evaluates the Intel, AMD, and Advanced RISC 
Machines (ARM) TrustZone processors. Douglas provided insight on how this VMM hardware 
support can be used to protect the VMM. 

 
Suh [Suh05] and Champagne [Cha10] both examined how hardware protections could be 

applied to VMMs to provide protection from both physical and software attacks. While this 
report does not address physical attacks, both Suh and Champagnes' research presented insight 
on specific attack vectors like secure booting and access to main memory, etc. 

 
Son and Alves-Foss [SAF07, SAF06b, SAF06a, SAF09] offer an information flow analysis 

and covert channel analysis for MLS and MILS system architectures. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
22 

In [Fra06] Franz introduces a new Multi-Level Security Virtual Machine architecture (MLS-
VM). The MLS-VM architecture allows completely untrusted application programs to perform 
computations on sensitive data without the risk of leaking secrets. Existing technologies, such as 
secure boot and a Trusted Platform Module (TPM), ensures the integrity of the MLS-VM. Once 
MLS-VM is up and running, it provides the appropriate protections for MLS systems. 

3.5 CONCERNS ABOUT INFORMATION FLOW ANALYSES OF 
MULTICORE AND VIRTUAL MACHINE ARCHITECTURES 

The methods for identifying and evaluating information flows presented in the Light Pink Book 
were developed when single-core processor architectures were prevalent. During this period, 
processor architectures evolved by increasing clock frequency, adding cache, and optimizing 
instructions. The underlying processor architecture remained relatively unchanged. The basics of 
single-core information flow analysis can be summarized as: 

 
1. Covert Channel Type Analysis 
2. Noise 
3. Aggregation 
4. Syntactic Information-Flow Analysis 
5. Shared Resource Matrix Analysis 
6. Noninterference Analysis 
 
Multicore architectures represent a fundamental shift in the processor design paradigm. 

Modern multicore architectures depend on parallelism and integrated hardware components to 
improve performance. Unicore information flow identification and evaluation methods do not 
scale well to modern multicore architectures. 

 
University of Idaho researchers investigated the security implications of running MILS-

compliant separation kernels on commercially available multicore architectures. Specifically, the 
University examined the data and the resource sharing components of these multicore 
architectures to ensure they can be used to ensure type-safety, no infiltration of information 
between cores, no exfiltration of information between cores, and no mediated information flows 
across cores. The University began the security review process by identifying the major 
functional components ala single-core analysis. Using a relatively ad-hoc, but informed, 
approach to multicore information flow analysis that was based on all the prior literature, the 
University's effort fell short. Specifically, 

 
1. Some resources were not identified. 
2. Some processor instructions were not evaluated (that should have been). 
3. Some interrupts were not evaluated (that should have been). 
4. Covert channel aggregation was not considered. 
 
Our research asserts that single-core information flow analysis methods are too simplistic to 

be effectively applied to multicore architectures. A new framework for multicore information 
flow analysis needs to be designed in such a way as to yield consistent, reproducible, and peer-
reviewable results. This project defines that framework in the next chapter. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
23 

 DEFINING A FRAMEWORK FOR MULTICORE INFORMATION 4
FLOW ANALYSIS 

 
This chapter defines a framework for multicore information flow analysis. The multicore 
information flow analysis process consists of three steps: 

 
1. Identify hardware components 
2. Identify and evaluate information flows and safeguards with regard to step #1. 
3. Apply security policies with regard to step #2 
 
These three steps are flushed out in detail later in this chapter, but first it is necessary to 

define an example reference multicore architecture upon which the framework can be applied. 

4.1 A HYPOTHETICAL REFERENCE ARCHITECTURE 
This section introduces a hypothetical multicore architecture to be used as a reference for 
introducing the framework proposed in this research. This reference architecture is intended to be 
simple enough to not be a burden with excessive details but expressive enough to help future-
proof this framework against new developments in multicore architectures. 

 
Figure 9 presents a block diagram of the reference multicore architecture. 

 

 
Figure 9: Reference Architecture Block Diagram 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
24 

Communications Bus: 
The reference multicore architecture uses the communication bus to communicate between the 
processor cores, memory controller, bus controller, and the widget. This bus is configured and 
managed in hardware and does not provide any software controllable configuration. Hardware 
components are memory mapped into discrete memory address ranges on the communication 
bus. Hardware prohibits bus snooping by ignoring all bus traffic with destination addresses 
outside of the memory mapped address ranges. 

 
Only processor cores are permitted to master (i.e., initiate communication on) the 

communication bus. Bus arbitration is handled by a token. Hardware alternates the token 
between the two processor cores on a fixed-time schedule. Bus components may only respond to 
the processor core mastering the bus. Bus transfers must complete before the token rotation; 
otherwise, hardware delays the bus transfer to the next cycle. 

 
The communication bus also provides a fixed number of interrupt lines. Bus components use 

these interrupt lines to signal the processing cores when the bus component needs to be serviced. 
 

Processing Cores: 
The reference multicore architecture provides two processing cores. Each processing core 
implements the same register set and instruction set. The processing core provides three 
hardware protection domains (i.e., privilege levels): Problem, Supervisor, and Hypervisor. The 
privilege level is the least privileged protection domain and is intended only for applications. The 
supervisor privilege level is the middle privileged protection domain and is intended for the 
operating system kernel. The hypervisor privilege level is the highest privilege protection 
domain and is intended for the hypervisor. 
 

The core set of processor registers are listed in Table 2. The reference architecture provides 
32 General Purpose (GP) registers for high-speed access. The Program Counter (PC) register 
stores the address of the instruction currently being executed. Each processing core can 
independently be configured to mask (i.e., ignore) interrupts. The INT_MASK register is 
programmable by the hypervisor to configure how the processor core handles interrupts. 

 
Table 2: Reference Multicore Architecture: Registers 

Registers Description Privilege 
GP (0 - 31) 32 General Purpose Registers Problem 
PC Program Counter Problem 
INT MASK Interrupt Mask Hypervisor 

 
The core instruction set is provided in Table 3. Each processing core has a Memory 

Management Unit (MMU) used to virtualize communication bus addresses to virtual memory 
addresses. The MMU and Input/Output Memory Management Unit (IOMMU) are programmed 
by the hypervisor to configure which communication bus addresses are visible to each 
processing core. Each processing core has a private L1 instruction and L1 data cache. The L2 
cache is shared by both processing cores. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
25 

Table 3: Reference Multicore Architecture: Core Instructions 

Mnemonics Operand
 

Description Operation Privilege 
Arithmetic and Logic Instructions 

ADD Rt,Ra,Rb Add Rt ← Ra + Rb Problem 
SUB Rt,Ra,Rb Subtract Rt ← Ra - Rb Problem 
MULT Rt,Ra,Rb Multiply Rt ← Ra * Rb Problem 
DIV Rt,Ra,Rb Divide Rt ← Ra / Rb Problem 
AND Rt,Ra,Rb Logical AND Rt ← Ra & Rb Problem 
OR Rt,Ra,Rb Logical OR Rt ← Ra  | Rb Problem 
NEG Rt,Ra Two’s Compliment Rt ← -Ra Problem 

Branch Instructions 
JMP A Jump PC ← A Problem 
BREQ Ra,Rb,A Branch if Equal if(Ra=Rb) then PC ← A Problem 
CALL A Call Subroutine R31 ← PC+4, PC ← A Problem 
SYSCALL A Call Priv Subroutine R31 ← PC+4, PC ← A Problem 
RET  Subroutine Return PC ← R31 Problem 

Memory Instructions 
LOAD Ra,Rb Load from memory Ra ← Memory[Rb] Problem 
STORE Ra,Rb Store in memory Memory[Ra] ← Rb Problem 
MMUCTL Ra,Rb Configure the MMU MMU[Ra] ← Rb Hypervisor 
IOMMUCTL Ra,Rb Configure the IOMMU MMU[Ra] ← Rb Hypervisor 
 
Memory Controller: 

The reference architecture uses the memory controller to map physical memory to an address 
range on the shared communication bus. The memory control is responsible for translating 
communication bus addresses to main memory physical addresses. This translation is completed 
in hardware and is not software configurable. 

 
Bus Controller: 

The reference architecture uses the bus controller to communicate with chip external peripherals. 
The bus controller is responsible for translating communication bus addresses to external device 
addresses. This translation is performed in hardware and is not software configurable. 

 
Widget: 

The widget hardware component is provided in the reference architecture to help future-proof the 
framework against advancements and changes in multicore architectures. Table 4 lists the widget 
registers that have been memory mapped to the communication bus. Table 5 lists the extensions 
to the processing core instruction set to operate the widget component. 
 

Table 4: Reference Multicore Architecture: Registers 

Registers Description Privilege 
WR (0 - x) x Widget Registers Supervisor 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
26 

Table 5: Reference Multicore Architecture: Widget Extension Instructions 

Mnemonics Operand
 

Description Operation Privilege 
WLOAD WRa, Ra Read Widget Register Ra ← WRa Supervisor 
WSTORE WRa, Ra Write Widget Register WRa ← Ra Supervisor 

 

4.2 APPLYING THE FRAMEWORK TO THE REFERENCE ARCHITECTURE 
The remainder of this chapter is devoted to applying this three step analysis to the hypothetical 
reference multicore architecture defined above. 

4.2.1 Identify Hardware Components 
The first step in the framework is to analyze the multicore architecture to identify and record all 
the major components. This component list provides a road map during the multicore 
architecture analysis, potentially identifies under-documented resources, and provides an 
executive summary of the components analyzed in this report. The executive summary is 
intended to simplify the evaluation of enhancements to the multicore architecture. 

 
Vendor data sheets typically provide a good resource for initially identifying the major 

components in the chip package. Hardware interface documentation frequently documents older 
buses (e.g., Serial Peripheral Interface (SPI)), General Purpose Input/Output (GPIO) pins, and 
other chip component interfaces. 

 
Using the hardware components identified in Figure 9 and assuming a Joint Test Action 

Group (JTAG) debug port was identified, reviewing the hardware interface documentation, 
Table 6 provides the analysis roadmap for the reference multicore architecture. 

 
The evaluated column in Table 6 provides a high-level summary of which components were 

evaluated during this analysis. This column is intended for a repeated analysis of multicore 
architectures to evaluate updates and enhancements. For example, many components may not 
require a reanalysis for the addition of a new instruction set extension. 

 
Table 6: Reference Multicore Architecture: Initial Hardware Components 

Hardware Component Evaluated 
Communication Bus Yes 
Processor Cores (2) Yes 
Memory Controller Yes 
Bus Controller Yes 
Widget Yes 
JTAG Debug Port Yes 

4.2.2 Information Flow Analysis 
The next step in the framework is to evaluate the information flows and to identify potential 
safeguards for each information flow. This step of the framework separates the evaluation of the 
multicore architecture from the security policy. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
27 

4.2.2.1 Communication Bus 
The communication bus has two potential information flows: (1) storage information flow and 
(2) timing information flow. 

 
Storage Information Flow: 

The communication bus is configured by hardware instead of software. This configuration 
eliminates all storage related information flows. 

 
Timing Information Flow: 

The communication bus is a shared resource and may be susceptible to timing information flows. 
Overt bus communications are initiated by a processing core to either load or store data at a 
specified bus address. Covert timing channels occur when a non-intended receiver is able to 
observe the sender modulating its use of the bus. The communication bus has the following 
safeguards to prevent non-aggregated covert timing channels: 

 
• Elimination of bus contention as a shared resource by using a token. 
• Elimination of bus usage (i.e. modulation) by rotating the token on a fixed-time schedule. 
• Elimination of snooping by enforcing addresses outside of the memory mapped range is 

ignored. 
 
The characteristics for covert timing information flows can be represented in a table. Each 

bus component is represented as a table column. Each combination of bus components capable 
of initiating bus transfers is represented as a table row. Each table cell identifies the covert 
timing information flow characteristics. The letter “M” indicates the sender is capable of 
modulating its use of a shared resource. The letter “O” indicates the receiver is capable of 
observing the modulation of the shared resource. In this particular case, no flows were found. 

 
Table 7: Reference Multicore Architecture: Analysis Results for Communication Bust Timing 

Information Flows (No flows in this case) 

 Core 0 Core 1 Memory I/O Bus Widget 
Core 0      
Core 1      
Core 0 + Core 1      

 
Safeguards: 

Table 7 summarizes the lack of covert timing communication channels on the communication 
bus. No additional safeguards are required for this component to prevent storage or timing covert 
communication channels. 

4.2.2.2 Processor Cores: 
Each processor core presents two information flow channels: (1) the communication bus and (2) 
external interrupts. 
 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
28 

Communication Bus Information Flow: 
Information flows on the communication bus are generated when processor instructions are 
executed that have non-local operands. Table 8 provides the analysis of processor instructions to 
storage locations. Read or Write access to shared storage locations represents potential storage 
covert communication channels. 

 
Table 8: Reference Multicore Architecture: Core Instruction Set Analysis 

 Privilege 
Required 

Non-shared Shared 
GP (0 - 31) PC MMU IOMMU MEM 

ADD Problem RW     
SUB Problem RW     
MULT Problem RW     
DIV Problem RW     
AND Problem RW     
OR Problem RW     
NEG Problem RW     
JMP Problem  W    
BREQ Problem R W    
CALL Problem W RW    
SYSCALL Problem W RW    
RET Problem R W    
LOAD Problem RW    R 
STORE Problem R    W 
MMUCTL Hypervisor R  W   
IOMMUCTL Hypervisor R   W  

 
External Interrupt Information Flow: 

External interrupts provide a potential covert timing communication channel. The receiver could 
trigger an interrupt request to the sender. The sender could modulate how long it takes to process 
the interrupt request. 

 
Safeguards: 

The hypervisor may configure the MMU and IOMMU to restrict the address space visible to 
each processing core. The hardware will then prevent the processing core from reading or 
writing to any address not mapped into the MMU or IOMMU. 

 
The hypervisor manages interrupt signals to each processor core by configuring the 

INT_MASK register. Masked interrupt signals, however, do not interrupt the processor core. 

4.2.2.3 Memory Controller: 
The memory controller has two potential information flows: (1) storage information flow and (2) 
timing information flow. 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
29 

Storage Information Flow: 
The memory controller performs a hardware translation between communication bus addresses 
and physical memory addresses. The memory controller is not software configurable and offers 
no direct storage. Physical memory addresses do provide a potential covert storage 
communication channel. 

 
Timing Information Flow: 

The bus infrastructure guarantees that all bus transactions will be completed before the bus token 
rotates to the other processor core. This configuration eliminates all timing related information 
flows. 

 
Safeguards: 

The memory controller does not provide any direct storage, but the physical memory behind the 
memory controller does. The memory controller does not provide any safeguards to restrict 
access to the physical memory. The hypervisor may configure the MMU register in each 
processing core to restrict access to storage in the physical memory. 

4.2.2.4 Bus Controller: 
The bus controller has two potential information flows: (1) storage information flow and (2) 
timing information flow. 

 
Storage Information Flow: 

The bus controller performs a hardware translation between communication bus addresses and 
external peripheral addresses. The bus controller is not software configurable and offers no 
storage. This configuration eliminates all storage related information flows. 

 
Timing Information Flow: 

The bus infrastructure guarantees that all bus transactions will be completed before the bus token 
rotates to the other processor core. This configuration also prevents the bus controller from 
acting as the sender and modulating its resources. The bus controller is capable of generating 
interrupt signals on the communication bus. The interrupt signals provide a potential covert 
timing information flow by allowing an external peripheral to observe the modulation of a shared 
resource (i.e., the interrupt signal). 

 
Safeguards: 

The bus controller does not provide any direct storage, but external peripherals may provide 
external storage that could be used as a storage covert channel. The bus controller does not make 
any safeguards available to restrict access to storage on the peripherals. The hypervisor may 
configure the IOMMU register in each processing core to restrict access to storage on the 
external peripherals. 

 
The bus controller does not present any safeguards to prevent potential covert timing 

channels due to interrupt signals. The hypervisor may configure the INT_MASK register in each 
processing core to determine which interrupt signals will interrupt the processing core. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
30 

4.2.2.5  Widget 
The widget has two potential information flows: (1) storage information and (2) timing 
information flow. 

 
Storage Information Flow: 

An extension to the core processor instructions was added to support the widget. Table 9 
augments the core instruction set analysis performed in Table 9 with the widget extension 
instructions. 

 
The widget component introduces a potential storage information flow. The sender (i.e., one 

of the processing cores) uses the WSTORE instruction to write data to the shared widget 
registers. The receiver (i.e., the other processing core) uses the WLOAD instruction to read the 
data from the shared widget registers. 

 
Timing Information Flow: 

The bus infrastructure guarantees that all bus transactions will be completed before the bus token 
rotates to the other processor core. The widget does not generate interrupt signals. The limited 
instruction set for the widget does not support timing characteristics. This configuration 
eliminates all timing related information flows. 

 
Safeguards: 

The IOMMU on each processor core can be configured by the hypervisor to grant or restrict 
access to the widget registers. 

Table 9: Reference Multicore Architecture: Widget Instruction Set Analysis 

 Privilege 
Required 

Non-shared Shared 
GP (0 - 31) PC MMU IOMMU MEM WR (0 - x) 

WLOAD Supervisor W     R 
WSTORE Supervisor R     W 

4.2.3 JTAG Debug Port 
The JTAG debug port provides access to all storage and timing information inside the reference 
multicore architecture. 

 
Safeguards: 

The JTAG debug port can be disabled by grounding the external JTAG clock line in hardware. 
 
Applying Security Policies 

In the previous section, the framework identified the information flows and safeguards. The next 
step in the framework is to map the information flow analysis and safeguard information to 
security policies. Separating the information flow analysis from the security policy provides a 
more scalable and reusable solution. To illustrate this reusability and scalability, the reference 
multicore architecture (see Figure 10) has been extended to model a system connected to both a 
Top Secret and Secret network.  
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
31 

 
Figure 10: Extended Reference Architecture Block Diagram 

 
The extended reference multicore architecture provides two Ethernet controllers as system 

peripherals. One Ethernet controller is connected to the Top Secret network, while the other 
Ethernet controller is connected to the Secret network. Each Ethernet controller is then mapped 
into a distinct address range on the communication bus. Each Ethernet controller is capable of 
generating external interrupts to signal the processor cores when the data is available. 

4.2.3.1 Sample Security Policy 1 
The first security policy states: 

 
1. Core 0 - This core shall be run with Top Secret privileges. 
2. Core 1 - This core shall be run with Secret privileges. 
3. Memory - Memory shall be partitioned into separate Secret and Top Secret regions. 
4. External Peripherals - Each Ethernet controller shall be classified at the same 

clearance level as the network it is connected to. 
5. Widget - The widget shall only be accessible at the Top Secret clearance level. 

 
Figure 11 illustrates the extended reference architecture with the first security policy applied. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
32 

 
Figure 11: Reference Architecture Block Diagram for First Security Policy 

 
The security policy dictates that the physical memory shall be divided into Secret and Top 

Secret regions. Each processing core shall be permitted to access the memory region if and only 
if the memory region and the processing core have the same clearance level. Table 10 defines 
how the hypervisor must configure the visibility of memory addresses to each processor core. 
 

Table 10: Security Policy 1: MMU Mappings 

 TS MEM Region S MEM Region 
Core 0 Visible  
Core 1  Visible 

 
Table 11 defines how the hypervisor must configure the device address range visibility to 

each processor core. Table 12 defines how the hypervisor must configure interrupt visibility for 
each processor core. Table 13 defines how the hardware must be configured to disable the JTAG 
debug port. 

Table 11: Security Policy 1: IOMMU Mappings 

 Core 0 Core 1 TS Ethernet S Ethernet Widget 
Core 0 Visible  Visible  Visible 
Core 1  Visible  Visible  

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
33 

 

 

Table 12: Security Policy 1: Masked Interrupts 

 TS Ethernet S Ethernet 
Core 0 Unmasked Masked 
Core 1 Masked Unmasked 

 

Table 13: Security Policy 1: JTAG Pins 

 Pin State 
JTAG Clock Grounded 

 

4.2.3.2  Sample Security Policy 2 
The second security policy states: 

 
1. Core 0 - This core shall be run with Top Secret privileges. 
2. Core 1 - This core shall be run with Secret privileges. 
3. Memory - Memory shall be partitioned into separate Secret and Top Secret regions. 
4. External Peripherals - Each Ethernet controller shall be classified at the same 

clearance level as the network it is connected to. 
5. Widget - The widget shall be accessible to both clearance levels. 

 
Figure 12 illustrates the extended reference architecture with the second security policy 

applied. The only difference between the two security policies is the security clearance required 
to access the widget. The hypervisor actions for configuring the MMU (Table 10) masked 
interrupt signals (Table 12), and JTAG Pins (Table 13) remains unchanged. 

 
The shared widget in the reference architecture presents a problem for this security policy. 

The WLOAD and WSTORE instructions for the shared widget only require supervisor privilege 
and do not trap to the hypervisor. The shared widget also introduces a potential covert storage 
communication channel. The safeguard identified in the framework may not work for this 
security policy since both processing cores need access to the shared widget. 

Three potential solutions exist for implementing this security policy: 
 

1. Select a different multicore processor architecture. 
2. Map the required functionality of the shared widget into each processing core without 

introducing the covert storage communication channel. 
3. Use paravirtualization, see Section 10.3.1. Implement the required functionality in the 

hypervisor and have each processing core make hypervisor calls to implement the 
shared widget functionality. 

 
This report describes the setup for option #3. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
34 

 
Figure 12: Reference Architecture Block Diagram for Second Security Policy 

 
Table 14: Security Policy 2: IOMMU Mappings 

 Core 0 Core 1 TS Ethernet S Ethernet Widget 
Core 0 Visible  Visible   
Core 1  Visible  Visible  

 
Table 14 defines how the hypervisor must configure the device address range visibility to 

each processor core. 
 
Since the widget device address range is not mapped into the IOMMU of either processor 

core, WLOAD and WSTORE instructions issued by the processing core will generate page 
faults. The hypervisor will therefore need to be augmented to provide a hypervisor function call 
to implement the required widget functionality.  

 
The hypervisor function call would perform the following actions atomically: 
 
1. Enter critical section (i.e., take a mutex to ensure only one processing core is accessing 

the widget at a time). 
2. Map the widget device address range in the processor IOMMU. 
3. Perform widget operation. 
4. Perform widget cleanup operations. 
5. Un-map the widget device address range from the processor IOMMU. 
6. Leave the critical section. 
7. Exit the hypervisor call. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
35 

It is important to note that by not following the recommended safeguard presented in the 
framework, additional covert communication channels (e.g., a covert timing channel) may be 
introduced. These potential covert communication channels would need to be reviewed and 
evaluated independently. 

4.3 FRAMEWORK BENEFITS, ADVANTAGES, AND VALUE 
This chapter introduced a robust and scalable framework for analyzing information flows in 
multicore architectures. To introduce this framework, first a hypothetical reference multicore 
architecture was introduced. This reference architecture was simple enough to not overshadow 
the framework with detail, but expressive enough to ensure that the framework could be 
applicable to future multicore architectures. 

 
As the framework was applied to the reference multicore architecture, the following 

information flows and safeguards were identified. 
 
• The design of the communication bus prevented covert storage and covert timing 

communication channels. 
• The processing cores present two potential covert communication channels: Storage 

channels on shared resources connected to the communication bus and timing channels 
due to external interrupts. Two safeguards were proposed: (1) Ensure that the hypervisor 
properly configures the MMU and IOMMU registers to restrict the visible bus address 
space and (2) Ensure that the hypervisor properly configures the INT_MASK register. 

• The design of the memory controller prevented covert storage and covert timing 
communication channels. 

• The bus controller presents a potential covert timing channel with the external interrupts. 
The bus controller provides no safeguards for preventing this potential communication 
channel. The INT_MASK register in each processing core provides a potential safeguard. 

• The widget provides storage and presents a potential storage covert channel. The 
processor instructions for reading and writing to the widget registers only require 
supervisor privilege. The IOMMU registers in the processing core provide a potential 
safeguard. 
 

The reference architecture was extended to provide a usage scenario with two Ethernet 
controllers connected to different classified networks. Two security policies were defined using 
the extended reference architecture. The information flows and safeguards identified in the 
framework were analyzed and mapped to each of the security policies. The safeguards presented 
by the reference architecture were sufficient to meet the requirements for the first security policy. 
The second security policy required augmentation of the hypervisor to support the shared widget 
resource. Additional analysis for the augmented hypervisor may be required to ensure that 
additional covert communication channels were not introduced. 

 
 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
36 

This framework provides a scalable, consistent, reproducible, and peer-reviewable solution 
for analyzing information flows in multicore systems. The framework introduces several 
scalability improvements: 

 
1. The separation of the hardware flow analysis from the security policies. Hardware flow 

analysis is coupled to the hardware and only requires updates as hardware changes. 
Security policies are flexible and change based on need. The hardware flow analysis 
reuse for multiple security policies reduces secure system evaluation cost and time. 

2. The framework provides for incremental updates. Incremental updates are intended for 
multicore architecture revisions where the changes are localized. For example: As new 
instruction set extensions are released, only the components touched by the new 
instructions would require evaluation.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
37 

 REVISITING CBEA USING THE FRAMEWORK 5
 

The University of Idaho previously evaluated the CBEA for use in a MILS-compliant 
architecture. This evaluation used a relatively ad-hoc, but informed, approach to multicore 
information flow analysis. This chapter presents the reanalysis of the CBEA using the framework 
presented in Chapter 4 as an example of using the framework. 

 
The CBEA does not define a single multicore architecture implementation [Son06]. Instead, 

the CBEA is intended to provide a flexible architecture to address various system and application 
requirements. Physically, a CBEA-compliant processor may consist of a single chip or multiple 
chips. Logically, a CBEA-compliant processor consists of four functional components: the 
PowerPC Processor Element (PPE), the Synergistic Processor Element (SPE), the Memory Flow 
Controller (MFC), and the Internal Interrupt Controller (IIC). Every CBEA-compliant processor 
must provide at least one PPE, at least one SPE, one IIC, and one Element Interconnect Bus 
(EIB). 

5.1  IDENTIFY HARDWARE COMPONENTS 
The first step in the framework is to identify the hardware components. For this analysis, we 
analyze the Complementary Metal-Oxide-Semiconductor (CMOS) 90 nm Cell Broadband 
Engine CBEA-compliant processor. This processor was used in the first and second generation 
Sony PlayStation 3 devices. Figure 13 provides the block diagram for the CMOS 90 nm Cell 
Broadband Engine processor [IBM07a]. 

 
Figure 13 identifies a number of hardware components that are not capable of working 

independently. These components are grouped together into logical units that are capable of 
being evaluated as an independent system-high component. 

5.1.1 Synergistic Processor Element 
The synergistic processing element is a unit in the CBEA (see SPE 0  ... SPE 7 in Figure 13) that 
contains a co-processor (Section 5.1.1.1) and memory flow controller (Section 5.1.1.2).  

5.1.1.1 Synergistic Processor Unit 
The SPU is logically divided into two hardware components: the Synergistic Execution Unit 
(SXU) and the Local Store (LS). 

 
Synergistic Execution Unit: 

The SXU is the computational unit for the SPU. The SXU is a Reduced Instruction Set 
Computing (RISC) core that has been optimized for 128-bit Single Instruction, Multiple Data 
(SIMD) instructions [Sca08, IBM07a]. Figure 14 provides a block diagram of the SXU. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
38 

 
Figure 13: CMOS 90 nm Cell Broadband Engine Block Diagram 

 
As shown in Figure 14 the SXU provides six execution units, a SXU register file, and two 

pipelines. The SXU is capable of executing two instructions concurrently, one instruction on the 
even pipeline, and the other instruction on the odd pipeline. The SXU register file contains 128, 
128-bit general purpose registers and one 128-bit Floating-Point Status and Control Register 
(FPSCR). The FPSCR register stores result information from floating-point operations. The 
functionality of the six execution units are described below:  

 
• SPU Control Unit (SCN) - Fetches and dispatches instructions to the other execution 

units as well as performing the branching and all other control operations 
• SPU Even Fixed-Point Unit (SFX) - Handles arithmetic/logic operations and performs 

comparisons and reciprocation on floating-point values. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
39 

• SPU Floating-Point Unit (SFP) - Performs operations on floating-point values; it also 
multiplies and converts integers 

• SPU Odd Fixed Point Unit (SFS) - Shifts quadwords; rotates words, half-words, bytes, 
and bits; it also shuffles bytes 

• SPU Load and Store Unit (SLS) - Performs loads and stores, manages the branch target 
buffer, and sends DMA requests to the LS 

• CPU Channel and DMA Unit (SSC) - Communicates with the MFC and controls DMA 
data transfer. 
 

 
Figure 14: SXU Block Diagram 

Local Store: 
This CBEA-compliant processor provides 256 KB of single-ported Static Random-Access 
Memory (SRAM) local storage for each SPE. The LS is not a cache and does not require tags or 
a backing store. Since the LS is single-ported, access to the LS is arbitrated using the following 
priorities [FAD+06]: 

 
1. DMA Transfers 
2. SPU Load/Store 
3. Instruction Fetch 

5.1.1.2 Memory Flow Controller 
The MFC provides the interface between the SPU and the EIB. It is responsible for data transfer, 
protection, and synchronization between the SPU’s LS and the main storage domain [Son06]. 
Figure 15 provides a block diagram for a typical MFC in a CBEA-compliant processor. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
40 

 
Figure 15: MFC Block Diagram 

 
The MFC provides two interfaces to the SPU: the SPU channel interface and the SPU’s LS 

interface [Son06]. The SPU channel interface provides access for the SXU to access MFC 
facilities and to issue MFC commands. The MFC then uses the SPU’s LS interface to access the 
local storage in the SPU component. 

 
The MFC also provides two interfaces to the Bus Interface Unit (BIU). The first interface 

provides access for the DMA controller to the EIB. This interface then allows the SPE to 
communicate with any other component connected to the EIB. The second interface provides 
Memory Mapped Input/Output (MMIO) access to the MFC facilities. This interface allows other 
system components to issue MFC commands for the SPE. MFC commands issued using this 
MMIO interface is called MFC proxy commands. 

 
The MFC provides three primary methods of communication: Direct Memory Access 

(DMA), Mailboxes, and Signals [Sca08]. DMA is the primary method the MFC uses for 
transferring large amounts of data. Mailboxes and Signals enable efficient communications for 
small data sizes. Mailboxes and Signals are messages that are commonly used as DMA control 
data. For example, Mailboxes may be used to transfer the effective address of the DMA data 
buffer and Signals may be used to coordinate synchronization between processing units. 
Fundamentally, the three communication methods all use MFC channels. Each MFC provides 32 
channels that are similar to UNIX pipes. Appendix A, Table 54 provides the available MFC 
channels for each SPE. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
41 

5.1.2 Element Interconnect Bus 
The EIB provides coherent and non-coherent data transfers between connected elements. This 
CBEA-compliant processor connects the PPE, the eight SPEs, the MIC, and the two FlexIO 
interfaces using four rings [IBM07a]. Two rings transfer data clockwise and the other two rings 
transfer data counterclockwise. 

 
To provide lossless communications, the EIB uses a bus arbiter to manage the bus 

transactions. The arbiter uses command credits to track transactions, prevent collisions, and 
provide fair access to the bus. An EIB element must have free command credits before it will be 
granted access to the bus. 

5.1.3 Cell Broadband Engine Interface Unit 
With the exception of the IIC, the Cell Broadband Engine Interface (BEI) component is not 
specified as part of a CBEA-compliant processor. This means that most of this component is 
specific to the CMOS 90 nm Cell Broadband Engine processor. 

 
This CBEA processor provides two Rambus FlexIO interfaces for connection to off-chip 

peripherals [RWW]. Both of these interfaces (IOIF0 and IOIF1) support a non-coherent I/O 
Interface (IOIF) protocol which is suitable for off-chip I/O peripherals. The IOIF0 interface is 
software selectable between the non-coherent protocol and the fully coherent EIB protocol. 
When IOIF0 is configured in coherent mode, the EIB can be extended off-chip. An example use 
case for this would be to coherently join two CBEA chips in order to produce a cluster. 

 
The BEI provides two primary functions: manages data transfers between the EIB and 

system peripherals and provides I/O address translation and command processing [RWW]. 
 
Bus Interface Controller: 

There is not much public information available for the Bus Interface Controller (BIC). The BIC 
appears to be a coherency bridge between the EIB and the non-coherent system peripherals. This 
CBEA-compliant processor provides two MMIO regions for each BIC. The BIC NClk MMIO 
regions do not appear used. The BIC BClk MMIO regions provide a single register to inform the 
hypervisor when the Rambus FlexIO interface has been initialized. 

 
Input/Output Controller: 

The Input/Output Controller (IOC) serves two primary roles: I/O address translation and 
interrupt handling. 

 
Address translation is handled by a 64-way, 4-set I/O Page Table (IOPT) cache and a 32-way 

direct mapped I/O Segment Table (IOST). 
 
The IIC is responsible for handling and routing interrupts. The hypervisor can choose to 

handle the interrupt in the IIC directly, or the IIC can be configured to interrupt the IOC or either 
of the PPE threads. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
42 

5.1.4 Memory Interface Controller 
The Memory Interface Controller (MIC) provides the interface between the EIB and the main 
storage [IBM07a]. The MIC supports two Extreme Data Rate (XDR) cell Input/Output (XIO) 
interfaces, which supports between 64 MB and 64 GB of XDR Random Access Memory 
(DRAM). 

5.1.5 Pervasive 
The Pervasive component is not specified as part of a CBEA-compliant processor. This means 
this entire component is implementation specific to the CMOS 90 nm Cell Broadband Engine 
processor. 

 
This component provides the pervasive performance monitor, power management, thermal 

management, and the test control unit functionality. This component also provides a Serial 
Peripheral Interface (SPI) for the Power-On-Reset (POR) initialization sequence. A Joint Test 
Action Group (JTAG) interface is also provided for low-level debugging and testing purposes. 

 
Performance Monitor: 

The performance monitor has the potential to gather data from every component. When enabled, 
this performance data is stored in trace buffers. At least part of this trace data is available via a 
MMIO region called the Trace Logic Array (TLA). It does not appear from the publicly available 
documentation that the performance monitor would cause an information flow back to the other 
components. Additional experiments on this CBEA-compliant processor with full hypervisor 
access would be needed to verify this. 

 
Power Management: 

The power management provides the ability to alter the divisor for the CBE core clock 
frequency. Altering the divisor for the CBE core clock provides an externally visible state 
change. 

 
Thermal Management: 

The thermal management monitors thermal conditions for the processor. When a thermal 
condition is detected two actions may occur: (1) a thermal interrupt is generated to the PPE 
and/or (2) execution cores (PPE and SPE) may be throttled or stopped. 

 
The external interrupt to the PPE provides information flow if a component is able to modify 

its thermal output. The throttling or stopping the execution of a processing core could provide an 
externally visible state change if a component is able to modify its thermal output. Additional 
experiments on this CBEA-compliant processor with full hypervisor access would be needed to 
determine if components are able to modify their thermal output. 

 
The thermal management provides the Thermal Sensor Interrupt Mask Register to prevent 

interrupt status bits from generating a thermal management interrupt to the PPE. 
 
Test Control Unit: 

This CBEA-compliant processor provides several Fault Isolation Registers (FIRs) for collecting 
and reporting information about errors [IBM07a]. These FIRs are organized into two categories: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
43 

global FIRs and local FIRs. Local FIRs are the lowest level of error collection and are located in 
different components in the processor. Error status from the local FIRs are ORed together and 
reported in the global FIRs. The global FIRs are located in the Test Control Unit. 

5.1.5.1 Serial Peripheral Interface 
This CBEA-compliant processor is initialized in two sequences: POR initialization sequence and 
firmware initialization sequence [IBM07a]. The POR initialization sequence requires assistance 
from an external system controller. The external system controller initializes and calibrates 
specific hardware components in the CBEA-compliant processor using the SPI interface. Once 
the POR initialization sequence is complete, the system reset interrupt is fired, which starts the 
PPE executing in hypervisor mode to complete the firmware initialization sequence. 

 
The external system controller is the master for the SPI bus. This configuration allows the 

external system controller to read and/or modify data inside the processor. While the external 
system controller is not in scope for this evaluation, it is important to identify and address 
potential information flows that the external system controller may introduce via the SPI bus. 

 
The SPI interface to the CBEA-compliant processor does provide a SPI Signal SPI_EN pin 

which is used to enable or disable the SPI interface. Since the external system controller is 
required for POR initialization the SPI_EN pin cannot be permanently disabled in hardware. 
Also, since the external system controller is the SPI bus master, the CBEA-compliant processor 
provides no additional safeguards to ensure that the SPI_EN pin remains disabled after the POR 
sequence has completed. 

5.1.5.2 Joint Test Action Group 
This CBEA-compliant processor provides a JTAG interface. Unfortunately, this JTAG interface 
was not described in any of the publicly available documentation for this processor. It is fair to 
assume that the JTAG interface would provide significant information flows. As a result, 
hardware experimentation is needed to determine if this JTAG interface could be disabled. 

5.1.6 Hardware Component List 
Table 15 provides a list of the independent, system-high components evaluated for this chapter. 
The initial evaluation of the CBEA was split between the University of Idaho and a customer. 
The customer evaluated the PPE hardware component, while the University of Idaho evaluated 
the non-PPE hardware components. The framework handles this split evaluation effort by 
identifying which components are evaluated in the report. Table 15 reflects the work performed 
by the University of Idaho and the component evaluations provided by this report. 

Table 15: CBEA: Hardware Component List 

Hardware Component Evaluated 
PPE No 
SPEs (8) Yes 
EIB Yes 
BEI Yes 
MIC Yes 
Pervasive Yes 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
44 

5.2 IDENTIFY AND EVALUATE INFORMATION FLOWS 
The second step in the framework is to identify and evaluate the information flows between the 
hardware components identified in the first step. 

 
The PowerPC architecture supports three privilege states: Hypervisor State4 Privilege State5, 

and Problem State [IBM07a]. Trusted software, running on the PPE, configures the HV and PR 
bits in the Machine State Register (MSR) to set the processor state. The analysis of the PPE and 
the trusted hypervisor is not part of this report. 

 
Table 16 provides the list of MMIO regions6 [IBM07a]. For this information flow analysis, 

this report assumes all memory regions marked “Yes” in the “HV” column are properly 
configured to only be accessible by the trusted hypervisor. 

 
Most of the components identified in Table 15 provide trace and debug information. This 

report assumes that this functionality will be disabled in production systems and ignores these 
information flows in areas where hypervisor privilege is required. 

Table 16: MMIO Memory Map 

Start End HV Area 
0x000000 0x3FFFFF No SPE Local Store, Problem State, and Privilege 2 
0x040000 0x40FFFF Yes SPE Privilege 1 
0x500000 0x500FFF Yes PPE Privilege 
0x501000 0x507FFF Yes Reserved 
0x508000 0x508FFF Yes IIC 
0x509000 0x5093FF Yes Reserved 
0x509400 0x5097FF Yes Pervasive: Performance Monitor 
0x509800 0x509BFF Yes Pervasive: Thermal and Power Management 
0x509C00 0x509FFF Yes Pervasive: RAS 
0x50A000 0x50AFFF Yes MIC and TKM 
0x50B000 0x50FFFF Yes Reserved 
0x510000 0x510FFF Yes IOC I/O Address Translation 
0x511000 0x5113FF Yes BIC 0 NClk 
0x511400 0x5117FF Yes BIC 1 NClk 
0x511800 0x511BFF Yes EIB 
0x511C00 0x511FFF Yes IOC I/O Command 
0x512000 0x512FFF Yes BIC 0 BClk 
0x513000 0x513FFF Yes BIC 1 BClk 
0x514000 0x514FFF Yes Reserved 
0x515000 0x7FFFFF Yes Reserved 

 

                                                 
4 This is also called Privilege 1 State. 
5 This is also called Privilege 2 State. 
6 This MMIO region starts at the address specified in the BP_Base register. The BP_Base register is initialized 

as part of the Power-On-Reset sequence. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
45 

5.2.1 Synergistic Processor Element 
This section provides the analysis of the SPE described in Section 5.1.1. 

5.2.1.1 Information Flows 
A major design goal for the CBEA was to replace Application Specific Integrated Circuit (ASIC) 
components with general purpose, high-speed data processing cores [SK09]. Due to this design 
goal, the SPEs were not designed to support general purpose operating systems. Instead the SPEs 
were optimized for data-rich operations assigned to them by the PPE [IBM]. The CBEA-
compliant processor under evaluation provides eight SPE cores. In this report, each SPE is 
evaluated as an independent system-high compartment. 

 
Another design goal for the CBEA was to address memory latencies introduced by slower 

memory technology and the memory hierarchy [SK09]. To overcome this memory latency 
problem, the SPE is logically divided into two components: the SPU and the MFC. The SPU is 
not able to access the main storage directly. The SPU is only able to access SPU private memory 
(i.e., the Local Store). The MFC is responsible for transferring data between the SPU LS and the 
main storage. This design allows for main storage data accesses to be processed concurrently 
with SPU instruction processing. 

 
To identify information flows, we logically wrap the SPE component in a fully-enclosed 

polyhedron metaphor. The surface color of the polyhedron represents the externally visible state; 
the mapping of colors to state is defined by the security analyst, determining the specific security 
relevant states. Using this framework: 

 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally 

visible state can be ignored. 
 
MFC Channel Interface: 

The MFC provides the channel interface to facilitate data transfer between itself and other 
system components. The channel interface produces information flows breaching the polyhedron 
surface. Several of the channels in this interface are blocking channels, which alter the externally 
visible state. 

 
MFC MMIO Interface: 

The MFC also provides an MMIO interface allowing other system components access to the 
internal MFC facilities. This MMIO interface produces information flows breaching the 
polyhedron surface. 

 
Interrupts: 

The MFC generates three classes of interrupts: Class 0 (Error), Class 1 (DMA Translation), and 
Class 2 (Application). 

 
SXU Instruction Analysis: 

The SXU instruction set provides 199 instructions, categorized into nine categories. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
46 

 
The Memory Load/Store instructions (Appendix A, Table 53) only resolve addresses in the 

SPU LS. Since the SXU and the LS are both in the same system-high compartment, these 
instructions do not generate information flows breaching the polyhedron surface. Also, the 
execution of any of these instructions will not alter the externally visible state of the SPE system-
high compartment. 

 
The Constant-Formation instructions (Appendix A, Table 54) only manipulate data stored in 

the SXU general purpose registers. The execution of these instructions will not generate 
information flows breaching the polyhedron surface or altering the externally visible state of the 
SPE system-high compartment. 

 
The Integer and Logical instructions (Appendix A, Table 56) only manipulate data stored in 

the SXU general purpose registers. The SXU instruction set does not support instructions that 
cause processor exceptions (e.g., division instructions could potentially generate a division by 
zero exception). With no outside data accesses and no processor exceptions possible, these 
instructions will not generate information flows breaching the polyhedron surface or alter the 
externally visible state of the SPE system-high compartment. 

 
The Hint-for-Branch instructions (Appendix A, Table 57) only provide a hint for upcoming 

branches. These instructions do not alter the current state of the SXU, but instead are designed to 
help optimize the pre-fetching of instructions for the SPU LS. Since the SXU and the LS are both 
in the same system-high compartment, these instructions do not generate information flows that 
breach the polyhedron surface or alter the externally visible state of the SPE system-high 
compartment. 

 
The Control instructions (Table 17) need additional investigation. The stop and stopd 

instructions are commonly used to signal the PPE for assistance (e.g., the SPE application has 
exited, or the SPE requests a PPE assisted callback). These instructions pass information to the 
PPE, thus causing an information flow to breach the polyhedron surface. These instructions also 
alter the externally visible state by stopping the execution of instructions in the SXU. The lnop 
and nop instructions do not cause information flows or externally visible state changes. The sync 
and dsync instruction stalls the execution of instructions until earlier loads, stores, and channel 
instructions have completed. The loads and the stores are to the SPU LS and would not cause an 
information flow. An experiment is needed to determine if stalling the SXU for channel 
instructions could be used as a covert channel. It is unclear from the publicly available 
documentation which special purpose registers the mtspr and mfspr instructions operate on. 
Additional documentation and/or experiments are needed to determine if these instructions 
generate information flows that breach the polyhedron surface and/or alter the externally visible 
state. 

 
The Shift and Rotate instructions (Appendix A, Table 58) only manipulate data stored in the 

SXU general purpose registers. The execution of these instructions will not generate information 
flows that breach the polyhedron surface or alter the externally visible state of the SPE system-
high compartment. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
47 

Table 17: SPE Control Instructions 

Name Mnemonic Required Version 
Stop and Signal stop Yes 1.0 
Stop and Signal with Dependencies stopd Yes 1.0 
No Operation (Load) lnop Yes 1.0 
No Operation (Execute) nop Yes 1.0 
Synchronize sync Yes 1.0 
Synchronize Data dsync Yes 1.0 
Move from Special-Purpose Register mfspr Yes 1.0 
Move to Special-Purpose Register mtspr Yes 1.0 

 
The Channel instructions (Table 18) require additional scrutiny. The rdch and wrch 

instructions breach the polyhedron surface by transferring data between system-high 
compartments. An experiment is needed to determine if the rchcnt instruction could be used for 
a covert communication channel. Specifically, is it possible for a different system-high 
compartment running at a different clearance level to modulate the channel capacity? 

 
Table 18: SPE Channel Instructions 

Name Mnemonic Required Version 
Read Channel rdch Yes 1.0 
Read Channel Count rchcnt Yes 1.0 
Write Channel wrch Yes 1.0 

 
The Compare, Branch, and Halt instructions (Table 19) also require additional scrutiny. The 

compare instructions do not generate information flows that breach the polyhedron or alter the 
externally visible state of the SPE system-high compartment. These branch instructions (bi, iret, 
bisled, bisl, biz, binz, bihz, and bihnz) provide software control over the interrupt processing 
state. When executing those branch instructions, the software chooses to enable interrupt 
processing, disable interrupt processing, or leave interrupt processing unmodified. The 
modification of the interrupt processing for the SPE is considered an externally visible state 
change due to the fact that it may provide a potential covert timing channel. The Halt instructions 
cause the SXU processor to halt when the test condition is true. Halting the SXU causes an 
externally visible state change given that it may be possible to either directly detect or infer when 
the SPE processor is not executing instructions. 

 
The Floating-Point instructions (Appendix A, Table 59) only manipulate data stored in the 

SXU general purpose registers and the FPSCR register. The SXU float-point architecture does 
not support processor exceptions; instead the FPSCR register is updated and instruction 
execution continues. It is the responsibility of the software to check the FPSCR for errors. The 
execution of these instructions will not generate information flows breaching the polyhedron 
surface or alter the externally visible state of the SPE system-high compartment. 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
48 

5.2.1.2 Safeguards 
MFC Channel Interface: 

The MFC DMA transfers are from the SPE point of view. The DMA get command retrieves data 
from an external address and the DMA put command pushes data to an external address. In 
either direction, the external address must be accessible to the SPE. The PPE provides an MMU 
and each SPE provides an MMU. These MMUs must be programmed properly to ensure that 
undesired information flows are prohibited. 

Table 19: SPE Compare, Branch and Halt Instructions 

Name Mnemonic Required Version 
Halt If Equal heq Yes 1.0 
Halt If Equal Immediate heqi Yes 1.0 
Halt If Greater Than hgt Yes 1.0 
Halt If Greater Than Immediate hgti Yes 1.0 
Halt If Logically  Greater Than hlgt Yes 1.0 
Halt If Logically  Greater Than Immediate hlgti Yes 1.0 
Compare Equal Byte ceqb Yes 1.0 
Compare Equal Byte Immediate ceqbi Yes 1.0 
Compare Equal Halfword ceqh Yes 1.0 
Compare Equal Halfword  Immediate ceqhi Yes 1.0 
Compare Equal Word ceq Yes 1.0 
Compare Equal Word Immediate ceqi Yes 1.0 
Compare Greater Than Byte cgtb Yes 1.0 
Compare Greater Than Byte Immediate cgtbi Yes 1.0 
Compare Greater Than Halfword cgth Yes 1.0 
Compare Greater Than Halfword  Immediate cgthi Yes 1.0 
Compare Greater Than Word cgt Yes 1.0 
Compare Greater Than Word Immediate cgti Yes 1.0 
Compare Logical Greater Than Byte clgtb Yes 1.0 
Compare Logical Greater Than Byte Immediate clgtbi Yes 1.0 
Compare Logical Greater Than Halfword clgth Yes 1.0 
Compare Logical Greater Than Halfword  Immediate clghti Yes 1.0 
Compare Logical Greater Than Word clgt Yes 1.0 
Compare Logical Greater Than Word Immediate clgti Yes 1.0 
Branch Relative br Yes 1.0 
Branch Absolute bra Yes 1.0 
Branch Relative and Set Link brsl Yes 1.0 
Branch Absolute and Set Link brasl Yes 1.0 
Branch Indirect bi Yes 1.0 
Interrupt Return iret Yes 1.0 
Branch Indirect and Set Link if External Data bisled Yes 1.0 
Branch Indirect and Set Link bisl Yes 1.0 
Branch If Not Zero Word brnz Yes 1.0 
Branch If Zero Word brz Yes 1.0 
Branch If Not Zero Halfword brhnz Yes 1.0 
Branch If Zero Halfword brhz Yes 1 0 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
49 

Branch Indirect If Zero biz Yes 1.0 
Branch Indirect If Not Zero binz Yes 1.0 
Branch Indirect If Zero Halfword bihz Yes 1.0 
Branch Indirect If Not Zero Halfword bihnz Yes 1.0 
 
MFC MMIO Interface: 

The MFC MMIO interface is accessed via effective memory addresses. The PPE and SPEs 
provide MMUs. These MMUs must be programmed properly to ensure that undesired 
information flows are prohibited. 

 
Note: this architecture was designed for the PPE processor to manage the SPE cores. This 

means the PPE will most likely require access to the each MFC MMIO interface. 
 
Interrupts: 

Each MFC provides the Interrupt Registers for managing interrupts [Son06]. These registers are 
designated as Privilege 1 and they are intended for the hypervisor to configure and control. The 
INT_Route register provides interrupt priority and destination for each class of interrupts. The 
INT_Mask_class0, INT_Mask_class1, and INT_Mask_class2 registers provide control over 
which interrupts are permitted to generate external interrupts. 

 
SXU Instructions: 

The information flows (including interrupts) can be managed with the previously mentioned 
safeguards. The CBEA-compliant processor does not provide any additional safeguards to 
protect against externally visible states. 

 
SPE Registers: 

Each MFC provides the MFC_SR1 register to provide high-level, programmable control over the 
MFC configuration. This register is designated as Privilege 1 and is intended for the hypervisor 
to configure and control. Table 20 describes the MFC configuration options available via this 
register. 
 

Table 20: MFC SR1 Configuration Options 

Field Name Brief Description 
TL Software or Hardware page table search 
S SPU master run control 
R Enable effective  address translation 
PR Restrict  MFC  access to problem state pages 
T Honor broadcast TLB Invalidate instructions 
D Map LS into the system address space 

 

5.2.2 Element Interconnect Bus 
This section provides the information flow analysis of the EIB described in Section 5.1.2. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
50 

5.2.2.1 Information Flows 
To identify information flows, we logically wrap the EIB component in a fully-enclosed 
polyhedron. The surface color of the polyhedron represents the externally visible state; the 
mapping of color to state is defined by the analyst. Using this framework: 

 
1. Any information flow that breaches any surface of the polyhedron must be evaluated. 
2. Any information flow that modifies the externally visible state must be evaluated. 
3. Any information flow that does not breach the polyhedron surface or modify the 

externally visible state can be ignored. 
 
Data Transfer: 

The primary purpose of the EIB is to transfer data between EIB elements. The data breaches two 
of the polyhedron surfaces: once as the data enters the EIB and again when the data leaves the 
EIB. 

 
Livelock Interrupt: 

The EIB provides internal logic to detect a livelock. The EIB can be configured to generate an 
interrupt when the livelock condition is detected. The interrupt then causes an information flow 
that breaches the surface of the polyhedron. 

 
Capacity: 

The EIB manages fairness using a command credit system. A potential covert channel may exist 
if EIB elements with different classifications are able to observe and modulate the use of 
command credits. Additional experiments are needed to determine if this potential covert 
channel exists. 

5.2.2.2 Safeguards 
Data Transfer: 

The EIB does not provide many methods for restricting information flow on the EIB bus. The 
only solution the EIB provides is to disable command credits for the EIB element, which in 
essence locks the element out of the EIB. 

 
Livelock Interrupt: 

Anytime the Livelock condition is detected, the LLD_Int bit will be updated in the EIB_CFG 
MMIO register. An interrupt will be generated when the LLD_Mask bit in the EIB_AC0_CTL 
MMIO register is set to 1. To disable the interrupt (and the information flows) set the LLD_Mask 
bit to 0. 

 
Capacity: 

MMIO registers in the EIB and TKM MMIO regions provide configuration options for 
allocating command credits. If experimentation identifies a potential covert channel, these 
configuration options could be tuned to potentially eliminate the covert channel. Additional 
experimentation would be required. 

5.2.3  Cell Broadband Engine Interface Unit 
This section provides the information flow analysis of the BEI described in Section 5.1.3. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
51 

5.2.3.1 Information Flows 
To identify information flows, we logically wrap the BEI component in a fully-enclosed 
polyhedron. The surface color of the polyhedron represents the externally visible state. Using 
this framework: 

 
1. Any information flow that breaches any surface of the polyhedron must be evaluated. 
2. Any information flow that modifies the externally visible state must be evaluated. 
3. Any information flow that does not breach the polyhedron surface or modify the 

externally visible state can be ignored. 
 
Data Transfer: 

The primary purpose of the BIC is to transfer data between EIB elements and the system 
peripherals. This data transfer breaches two of the polyhedron surfaces: once as the data enters 
the BIC and again when the data leaves the BIC. 

 
Address Translation Cache: 

A potential information flow may exist by exploiting the address translation cache. Additional 
experiments are needed to determine if the address translation cache could provide a covert 
communication channel. 

 
Capacity: 

The analysis of off-chip peripherals is not in scope for this analysis. The security policy analysis 
should still consider the potential covert channels due to bandwidth capacity for off-chip busses. 

 
Interrupts: 

An information flow exists if the IIC is configured to route interrupts to either of the PPE 
threads. 

5.2.3.2  Safeguards 
Data Transfer: 

The BEI provides the IOC_BaseAddr0, IOC_BaseAddrMask0, IOC_BaseAddr1, and 
IOC_BaseAddrMask1 registers for BIC address translation. These address translation registers 
must be programmed properly. 

 
Also, the PPE and SPEs provide MMUs, which must be programmed properly to ensure that 

undesired information flows are prohibited. 
 
Interrupts: 

The IIC_IR register in the IIC provides software configuration for the priority and routing of 
interrupts. 

5.2.4 Memory Interface Controller 
This section provides the information flow analysis of the MIC described in Section 5.1.4. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
52 

5.2.4.1  Information Flows 
To identify information flows, we logically wrap the MIC component in a fully-enclosed 
polyhedron. The surface color of the polyhedron represents the externally visible state. Using 
this framework: 

 
1. Any information flow that breaches any surface of the polyhedron must be evaluated. 
2. Any information flow that modifies the externally visible state must be evaluated. 
3. Any information flow that does not breach the polyhedron surface or modify the 

externally visible state can be ignored. 
 
Data Transfer: 

The primary purpose of the MIC is to transfer data between EIB elements and main storage. The 
data breaches two of the polyhedron surfaces: once as the data enters the MIC and again when 
the data leaves the MIC. 

 
Capacity: 

The MIC provides a specific memory and channel bandwidth to the EIB. Depending on the 
hardware configuration, (i.e., the number of banks of memory, memory configuration, etc.) a 
timing information flow may exist if the cooperating EIB elements are able to modulate the 
consumption of the memory and/or EIB channel bandwidth. Additional experimentation is 
needed to identify the existence of this covert communication channel. 

5.2.4.2  Safeguards 
Data Transfer: 

The MIC relies on the proper configuration of the MMUs in the PPE and the SPEs to restrict 
access to the main memory store. 

 
Capacity: 

The memory channel capacity is subject to hardware constraints. Managing EIB command 
credits may provide a method for eliminating this potential channel. Additional experimentation 
is required to verify any safeguard properly addresses the covert channel potential. 

5.2.5 Pervasive 
This section provides the information flow analysis of the pervasive unit described in Section 
5.1.5. 

5.2.5.1 Information Flows 
The component is assumed to be under complete control from the trusted hypervisor. No 
information flow analysis was performed. 

5.2.5.2 Safeguards 
Trace and debug capabilities should be disabled. Also, the trusted hypervisor should ensure that 
all the MMIO regions specified in Table 16 are properly protected. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
53 

5.3 APPLYING THE SECURITY POLICY 
The final step in the framework is to apply the Security Policy to the information flows identified 
in the previous step. 

 
Initially, the University of Idaho evaluated the CBEA architecture for use as a generic MILS 

capable multicore architecture. The University of Idaho looked at using the CBEA architecture 
as a security gateway to bridge red and black networks. Red networks are cleared to transmit 
classified and/or sensitive information in plaintext. Black networks are cleared to transmit 
encrypted classified and/or sensitive information. CBEA spider network illustrates how two 
security gateways would be used to transmit classified and/or sensitive information between two 
red networks via a black network. 

 
In this scenario, a Sony PlayStation 3 is used for the CBEA-compliant processor. The CBEA 

compliant processors are used as the red-black network security gateways. Each security 
gateway will use four SPE processors. Three SPE processors are used to encrypt red network 
data or decrypt black network data. The fourth SPE processor serves as a guard to verify that any 
data transmitted across the black network is encrypted. 

 
 

 
Figure 16: CBEA spider network 

 
 
 
 
The security policy used for this report: 
 
1. Red network data is only permitted to be transmitted to a red network with the same 

classification. Separate cryptographic keys shall be used to ensure the separation of data 
at different classification levels. 

2. All encrypted data must pass through the guard before transmission on the black network. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
54 

5.4 CONCLUSIONS 
For this report, we reanalyzed the information flows and safeguards against the security policy 
for the red-black network security bridge7. Based on the partial analysis provided in the previous 
step, we cannot recommend the CBEA multicore architecture as a generic MILS architecture for 
the following reasons: 

 
• SPE cores are not intended for general purpose processing. 
• The most complex component (i.e., the PPE) must be trusted. Also, the PPE must run as a 

MLS compartment instead of a system-high component to securely manage the SPE 
cores. 

• Blocking MFC communication channels may provide covert timing communication 
channels. 

5.5 FRAMEWORK ENHANCEMENTS 
During the analysis the following enhancements were made: 

 
1. The six-sided box metaphor was changed to a fully-enclosed polyhedron. While the six-

sided box metaphor accomplished the goal of providing a fully enclosed area, there is 
nothing special about six sides. The fully-enclosed polyhedron accomplishes the same 
goal without the restriction of six sides. 

2. The original framework did not take into consideration the externally visible state. 
During this analysis, it became apparent that some instructions (e.g., halt) would not 
breach the fully-enclosed polyhedron, but would still produce a potential information 
flow. To handle this situation, a surface color was added to the fully-enclosed polyhedron 
to represent the externally visible state. 

                                                 
77 This analysis is incomplete since it did not include the PPE processor. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
55 

 EVALUATING FREESCALE P4080 USING THE FRAMEWORK 6
 

This chapter describes the analysis of the Freescale P4080 using the framework as originally 
defined and enhanced by the reanalysis of the CBEA described in the previous chapter.  

6.1 IDENTIFY HARDWARE COMPONENTS 
The first step in the framework is to identify the hardware components. The P4080 multicore 
architecture is designed for communication systems such as: routers, switches, base station 
controllers, and radio network controllers [ine]. Communication systems can be modeled using a 
control plane and a data plane. The control plane is intended to handle slow, complex packet 
management tasks, while the data plane is intended to handle common packet tasks at wire 
speed. Figure 17 illustrates an example architecture where the processor cores are logically 
partitioned into a control plane, a data plane, and other services. 

 

 
Figure 17: P4080 Architecture 

 
 
 
The two cores in the control plane work together to form an independent Symmetric Multi-

Processor (SMP) system. The four processor cores in the data plane run as independent systems. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
56 

The other two processor cores also run as independent systems and are responsible for all non-
packet processing. 

 
This configuration supports seven independent Asymmetric Multi-Processor (AMP) systems. 

Unlike SMP systems, AMP systems do not share a common resource manager, which greatly 
increases the difficulty of managing system resources and resolving resource conflicts [Fre11a]. 
To assist AMP configurations, the P4080 multicore architecture provides hardware support for 
partitioning systems resources (e.g., processor cores, system memory ranges, and peripherals) 
into logical partitions. System resources assigned to a logical partition are prevented by the 
hardware from accessing resources assigned to a different logical partition. 

6.1.1 Processor Cores 
Each processor core provides six pipelined, superscalar execution units, private instruction and 
data L1 caches, a private unified L2 cache, private Memory Management Units (MMUs), and a 
CoreNet Bus Interface Unit. 

 
Execution Units: 

A superscalar processor is capable of issuing multiple independent instructions into independent 
execution units in a single clock cycle. Each e500mc processor core implements the following 
execution units: two simple integer instruction units (SFX0, SFX1), a complex integer 
instruction unit (CFX), a branch unit (BU), a floating-point unit (FPU), and a load/store unit 
(LSU). The functionality of these six execution units are described below: 

 
1. Simple Integer Units (SFX0, SFX1) - The SFX0 and SFX1 execution units process all the 

simple integer instructions. The simple integer instructions include all integer instructions 
except the integer multiplication and integer division instructions. The SFX0 execution 
unit is capable of processing the entire set of the simple integer instructions; whereas the 
SFX1 execution unit is only capable of executing a subset of the simple integer 
instructions. 

2. Complex Integer Unit (CXF) - The CXF execution unit processes the integer 
multiplication and integer division instructions. 

3. Branch Unit (BU) - The BU execution unit processes the branch and logical control 
register instructions. 

4. Floating Point Unit (FPU) - The FPU execution unit processes the floating point 
instructions. 

5. Load/Store Unit (LSU) - The LSU execution unit processes integer and floating-point 
load operations. The LSU manages transactions between the caches and the general 
purpose and floating point registers. The LSU coordinates traffic in the instruction 
pipeline with the load and store memory traffic to ensure that the processor core 
maintains a coherent and consistent view. The LSU is also responsible for calculating 
effective addresses, handling data alignment, and interfaces with the CoreNet bus 
interface unit [Fre11a]. 

 
To improve performance, all six execution units are pipelined. Pipelining breaks the 

instruction execution into discrete stages. These multiple stages simplify the execution sequence, 
allowing for a higher clock frequency. Instructions must pass sequentially through each stage to 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
57 

complete the instruction execution. Although each instruction requires multiple clock cycles to 
complete, a full pipeline completes instructions every clock cycle. 

 
Caches: 

Each e00mc processor core supports a two-level cache hierarchy. The first level (L1) cache is 
split into private data and instruction caches. The second level (L2) backside cache is also private 
to each e500mc processor core. This cache is physically implemented as a dynamic Harvard 
architecture (i.e., a single, unified cache for both instructions and data, but provides Harvard 
architecture properties by providing different behaviors for the instruction and the data cache 
entries). Instructions stored into the L2 cache are marked with the N status bit to denote that the 
cache line was loaded incoherently. 

 
Memory Management Units: 

The e500mc supports four different address types: Real Address (RA), Logical Address (LA), 
Effective Address (EA), and Virtual Address (VA). The processor core uses the RA type to 
interact with system memory (i.e., the CoreNet address space). LA types are used by guest 
operating systems. The hypervisor translates the LA to the RA when the guest writes the TLB 
entry. EA types are used by software to reference storage locations (e.g., instructions and data 
addresses). VA types are formed using EA types and supplying state information from the 
current address space context [Fre11b]. Equation (1) shows how the e500mc constructs normal 
VA entries by concatenating the following information together: 

 
VA = MSR[GS] || LPI DR || MSR[I S|DS] || PID || EA   Eqn. (1) 
 
The values in Eqn. (1) are defined as: 
 
1. MSR[GS] identifies the processor state (i.e., guest or hypervisor). 
2. LPIDR identifies the logical partition in execution. 
3. MSR[IS|DS] identifies if the VA is part of instruction or data address space. 
4. PID values further identify the process address space. 
5. EA is the effective address space. 
 
The e500mc also supports VA using an external PID (Process Identification Number) 

addressing. External PID addressing provides a more efficient method for system software to 
move data and to perform cache operations across disjoint address spaces. Eqn. (2) shows the 
e500mc constructs VA entries using external PID addressing: 

 
V A = EGS || ELP I DR || EAS || EP I D || EA    Eqn. (2) 
 
The values in Eqn. (2) are defined as: 
 
• EGS identifies the external guest state. 
• ELPIDR identifies the external logical partition ID. 
• EAS identifies the external context address space. 
• EPID identifies the external context process ID. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
58 

• EA identifies the effective address space. 
 
To maximize performance, each processor core implements a two-level, hierarchical MMU 

architecture. Two first-level MMUs are implemented in hardware. One MMU is dedicated for 
instructions, while the other MMU is dedicated for data. The L1 MMUs are maintained by 
hardware and are invisible to the software programming model. Hardware maintains L1 MMU 
entries as a proper subset of the second-level L2 MMU [Fre11a]. 

 
Translation Lookaside Buffers (TLB) are the hardware resources used to store the address 

translations, verify access controls, and maintain memory and cache attributes for the virtual 
memory pages. To maximize performance and flexibility, a variable-sized page and fixed-sized 
page TLB are implemented for each cache in the e500mc processor core. Both the variable-sized 
page TLB and the fixed-sized page TLB are searched in parallel for TLB hits. The L1 instruction 
MMU and L1 data MMU operate independently and can be accessed in parallel [Free11a]. The 
independent L1 instruction and L1 data TLBs presented in the e500mc processor core violate the 
TLB concept presented in [Fre11b]. The TLB concept states: “TLBs are defined by the 
architecture to be unified between instruction and data accesses. That is, a separate set of TLB 
structures between instruction fetch and data accesses are not permitted.” Although not explicitly 
stated we believe this was seen as a necessary improvement for multicore architectures. This 
type of change leads to potential confusion and problems among security analysts who must be 
sure the documentation being used matches the microprocessor variant being analyzed.  

 
CoreNet Bus Interface Unit: 

The Bus Interface Unit (BIU) interfaces the processor cores to the CoreNet coherency fabric. 
The BIU handles CoreNet transaction ordering and maintains system coherency by address 
snooping and updating the affected processor components (e.g., caches, memory subsystems, 
Etc.). 

6.1.2 CoreNet 
CoreNet Coherency Fabric: 

The CoreNet coherency fabric serves as a central interconnect for processor cores, platform-level 
caches, memory subsystems, peripheral devices, and I/O host bridges [Free11c]. The main 
purpose of the CoreNet coherency fabric is to provide the communication channel to move data 
from the source component to the destination component. 

 
CoreNet Coherency Cache: 

The frontside L3 cache (a.k.a., CoreNet platform cache) connects the memory controllers to the 
CoreNet coherency fabric. The CoreNet platform cache can be configured in one or more of the 
following modes: (1) a general purpose write-back cache, (2) an I/O stash, or (3) a memory 
mapped SRAM [Fre11c]. When the CoreNet platform cache has a backing store (i.e., configured 
in the general purpose writeback cache mode or the I/O stash mode), the CoreNet platform cache 
is then only able to cache address ranges present in the memory controller behind it. Each mode 
defines the allowable information flows and the L3 cache color. 

 
Peripheral Access Management Unit: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
59 

Each processor core's MMU settings determine which memory regions are accessible to each 
core. Peripheral Access Management Units (PAMU) isolate CoreNet from other coherency and 
I/O domains. In order to prevent non-processor core system masters from accessing sensitive 
memory regions, the PAMUs enforce authentication and access controls to various memory 
regions. 

 
Each non-processor core master is assigned a Logical I/O Device Number (LIODN). Non-

processor device masters are assigned a unique LIODN by the hypervisor, providing an 
authentication method. Memory address requests are authorized against PAMU configured 
memory regions. 

6.1.3 DDR2/DDR3 SDRAM Controller 
The P4080 multicore architecture supports two fully programmable Double Data Rate 
Synchronous Dynamic Random-Access Memory (DDR SDRAM) controllers. These DDR 
SDRAM controllers support Error Checking and Correction (ECC) memory to reduce bit error 
rates. The DDR SDRAM controllers support special features, including ECC error injection, to 
support system debugging. 

6.1.4 Enhanced Local Bus Controller 
The enhanced Local Bus Controller (eLBC) provides access to miscellaneous peripherals from 
the CoreNet Coherency Fabric. These miscellaneous devices include, but are not limited to, boot 
flash, security monitor, Universal Asynchronous Receiver/Transmitter (UART), General Purpose 
Input/Output (GPIO) pins, Serial Peripheral Interface (SPI) bus, Universal Serial Bus (USB) and 
Secure Digital / MultiMedia Cards (SD/MMC).  

 
The eLBC is composed of eight local memory banks, a memory controller, and five 

peripheral interface controllers. The memory controller is responsible for managing the eight 
memory banks shared by the peripheral interface controllers. The peripheral interface controllers 
are composed of one General Purpose Chip Select Machine (GPCM), one NAND Flash Control 
Machine (FCM), and three User-Programmable Machines (UPMs). Each memory bank is 
assigned to at most one of the peripheral interface controllers. The address and data lines are 
shared by all the peripheral interface controllers. The memory bank containing the address 
determines which peripheral interface controller masters the local bus. 

6.1.5 High-Speed Peripheral Interface Complex 
Peripheral Component Interconnect Express: 

The Peripheral Component Interconnect Express (PCIe) bus provides a high-performance, point-
to-point topology. Each end point device is connected to the root complex (host) via a serial 
interface. PCIe provides a standard interface and has a significant install base. 

 
The P4080 architecture provides three PCIe controllers. Each PCIe controller can be 

configured to operate either as a root complex or an end point device. 
 
 
 
Rapid Input/Output: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
60 

The Rapid Input/Output (RapidIO) interconnect architecture provides a high-performance, 
packet-switched, interconnect technology. RapidIO offers a standard interface and has a 
significant install base in embedded production systems. The P4080 architecture provides two 
serial RapidIO (sRIO) endpoints and the RapidIO Message Unit (RMU). These RapidIO units 
are compliant with the RapidIO Interconnect Specification, Revision 1.2. 

 
Direct Memory Access Controllers: 

The P4080 architecture provides two Direct Memory Access (DMA) controllers. Each DMA 
controller provides four DMA channels. Each DMA channel is capable of complex data moving 
and advanced transaction chaining. 

 
A DMA transfer request can be initiated by either a processor core or an external host. Either 

a processor core or a new external device can initiate a DMA transfer. Once the DMA 
transaction has been accepted, a DMA channel is assigned and remains active until either the 
DMA transaction is completed or the allotted DMA channel bandwidth is consumed. 

6.1.6 Data Path Acceleration Architecture: 
The Data Path Acceleration Architecture (DPAA) provides the infrastructure for the P4080 
multicore architecture to support simplified sharing of network interfaces and hardware 
accelerators by multiple processor cores. Traditional routing and bridging, firewalls, Virtual 
Private Network (VPN) terminations, intrusion detection and prevention systems, and network 
anti-virus solutions illustrate some example applications that the DPAA was designed to 
accelerate. The DPAA typically manages the packet distribution and queue congestion, leaving 
the software in charge of protocol processing [Fre11d]. 

 
The DPAA uses components to provide a scalable, modular solution for different processor 

families. These components are identified as either core or hardware accelerator components. 
The core components include the Buffer Manager (BM), the Queue Manager (QM), and the 
Frame Manager (FM). The P4080 multicore architecture provides a single BM, a single QM, and 
two FMs. Additionally, the P4080 multicore architecture also provides two hardware accelerator 
components: the Security Encryption Engine (SEE) and the Pattern Matching Engine (PME). 
Figure 18 illustrates the subsection of the P4080 multicore architecture representing these DPAA 
components. Table 21 provides common terms and definitions used in the DPAA. 

 
Table 21: DPAA Terms and Definitions 

Term Definition 
Buffer Region of contiguous memory managed by the DPAA BM 
Buffer Pool Set of Buffers with common characteristics (e.g., size, alignment, access controls) 
Frame Single Buffer or list of Buffers  that hold data, (e.g., packet payload, header 

or other control information) 
Frame Queue FIFO of Frames 
Work Queue FIFO of Frame Queues 
Channel Set of eight Work Queues with hardware provided priority access 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
61 

 
Figure 18: DPAA Block Diagram 

Buffer Manager: 
The primary function of the BM is to reduce the software overhead for managing the free buffer 
pools for multiple processor cores, network interfaces, and other hardware accelerators. The BM 
stores free buffer proxy records in a private external memory region. The BM is programmed to 
use this private external memory region via the FBPR_BARE, FBPR_BAR, and FBPR_AR 
registers. Additionally, a CoreNet Local Access Window (LAW) must be configured for this 
private external memory region. This CoreNet LAW number must also be programmed into the 
BMAN_LIODNR register. This configuration is used by the QM to generate authenticated 
CoreNet transactions to the private external memory region for the BM [Fre11d]. Figure 19 
provides a block diagram of the BM component. 

 
Software allocates memory buffers and passes these memory buffers to the BM, which 

maintains them as free lists. The BM supports 64 buffer pools, allowing the software to organize 
memory buffers by different characteristics (e.g., buffer size, memory partition, address 
alignment). The BM does not enforce these buffer characteristics; this can be made the software's 
responsibility if desired. 

 
To reduce buffer request latency, the BM maintains a small stockpile of buffers for each 

buffer pool. The BM maintains this stockpile by retrieving additional buffers from the external 
memory buffer list when the stockpile falls below a software configured limit. The BM will also 
push buffers back to the external memory buffer lists when the number of internal buffers 
exceeds a software configured limit. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
62 

 
Figure 19: DPAA BM Block Diagram 

 
Direct connect portals bypass the system interconnect bus (i.e., CoreNet) to reduce latency 

for hardware components participating in the DPAA. The P4080 multicore architecture provides 
direct connect portals to each frame manager, the security engine, and the pattern matching 
engine. Direct connect portals use a dedicated set of interface signals to handle buffer states. This 
allows the hardware component to implement automatic flow-control or other actions depending 
upon the buffer state [Fre11d]. 

 
The BM provides 10 software portals for the processor cores. Software can perform the 

following functions on each software portal: (1) configure the software portal (including how 
interrupts are handled), (2) query the buffer pools to see which ones have free buffers available, 
(3) acquire buffers from the pool, and (4) return buffers to the pool. 

 
Queue Manager: 

The primary function of the QM is to provide a central resource for efficiently moving data 
between multiple processor cores, network interfaces, and other hardware accelerators. To 
manage this data, the QM uses frames, frame queues, work queues, channels, portals, 
algorithmic sequencers, and a multi-way resource arbiter. A frame is the basic unit of data 
managed by the QM. Each frame contains one or more buffers. Frame queues provide the basic 
queuing structure used in the QM. Frame queues are created by software and managed by the 
QM using frame queue descriptors. Frame queues provide three distinct mechanisms for 
congestion management WRED, congestion state tail drop, and frame queue tail drop. When a 
frame queue is ready to be processed, it is enqueued into a work queue. Work queues are 
organized into channels. Each channel has eight work queues with a relative priority of zero to 
seven. The QM, in the P4080 multicore architecture, supports 51 channels:  12 dedicated 
channels for each FM, one dedicated channel for the SEC, one dedicated channel for the PME, 
10 dedicated channels for the software portals, and 15 pool channels shared by all the software 
portals. Portals provide the external interface to QM. QM provides 10 software portals and four 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
63 

direct connect portals. The P4080 multicore architecture also contains 16 algorithmic sequencers. 
These algorithmic sequencers manage the interaction between the QM channels and portals. 
Algorithmic sequencers provide both isolation and parallelism between the portals. The multi-
way resource arbiter serves as the central entity between the algorithmic sequencers and the 
portals and the QM resource managers. This allows the algorithmic sequencers to act 
independently while maintaining the integrity of the QM resources. Figure 20 provides a block 
diagram of the QM component. 
 

 
Figure 20: DPAA QM Block Diagram 

 
The QM requires two external memory regions. One memory region is reserved for frame 

queue descriptors. The other memory region is reserved for the QM to store its private member 
data structures. Software programs the FQD_BAR, FQD_BARE, BQD_AR, PFQD_BAR, 
PFQD_BARE, and PQFD_AR registers to configure the QM to use these two memory regions. 
The QM's private memory region must be protected from all access other than the QM. 

 
Frame Manager: 

The P4080 multicore architecture provides two FM components. The primary function of an FM 
is to combine Ethernet network interfaces with packet distribution logic in order to produce 
intelligent distribution and queuing decisions for incoming traffic at line rate. Figure 21 provides 
a block diagram for the FM component. 
 

Each FM component provides four variable speed Ethernet controllers (1GE) and one 10-
Gigabit Ethernet Controller (10GE). The variable speed Ethernet controllers are configurable to 
run at 10 Mbps, 100 Mbps, and 1 Gbps. These Ethernet controllers are connected to the SerDes 
bus and are responsible for the transmission and reception of network packets. The remaining 
blocks in Figure 21 are used to accelerate the parse, classify, and distribute flows. The BMI 
block interfaces with the DPAA BM component to acquire and release buffers. The Queue 
Manager Interface (QMI) block interfaces with the DPAA QM component to enqueue and 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
64 

dequeue frames. The classifier block provides a coarse classification by extracting common 
protocol fields from the packet. The DMA block moves data between external memory and the 
internal FM shared memory buffer. The Internal Shared Memory Buffer block stores the transmit 
and receive FIFOs and the coarse classification data structures. The scheduler manages the frame 
processing between the internal FM blocks. The Parser block provides finer-grained parsing 
capabilities. This block supports both hardwired and user-defined parsing functions. The 
KeyGen block generates frame queue identifiers based on user-defined criteria. The Policer 
block supports the differentiation of services at wire speed. This block may also be used to 
protect the processor cores from excessive traffic or packet rates. 

 

 
Figure 21: DPAA FM Block Diagram 

 
Pattern Matching Engine: 

The primary purpose of the PME is to search DPAA data streams against patterns constructed 
from regular expressions at wire speed. Figure 22 provides a block diagram of the PME 
component. 

 
The Pattern Matcher Frame Agent (PMFA) dequeues any available frames from the QM and 

determines what action needs to be taken on the frame(s). When a scan request is received, the 
frame is separated into work units (i.e., atomic PME work request operations). The PMEA 
preserves order, so work units are completed in the same order they were selected. The PMFA 
schedules the work units into the pipeline for additional processing. 

 
The PME implements the core pattern matching functionality as a three stage pipeline. The 

first stage is implemented in the Key Element Scanner (KES). The KES searches up to 32,000 
patterns simultaneously using a proprietary multistage hash algorithm. Work units generating a 
hash match are forwarded to the next stage where a more stringent comparison is performed. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
65 

 
Figure 22: DPAA PME Block Diagram 

 
The second stage in the pipeline is the Data Examination Engine (DXE). This stage 

implements a non-deterministic finite automation capable of implementing a significant subset of 
the regular expression pattern definition syntax. Successfully matched work units are passed to 
the final stage in the pipeline. 

 
The Stateful Rule Engine (SRE) is the final stage in the pipeline. This stage implements a 

finite state machine to track complex scenarios involving one or more flows. For example, the 
SRE could be used to detect patterns in a pair of flows. Each flow would represent the 
communication direction. The SRE reports pattern match events to the PMFA, which in turn 
notifies software of the scan results. 

 
The memory interface provides the PME components access to initiate read and write 

CoreNet transactions. Software must configure a valid Logical I/O Device Number (LIODN) in 
the PME LIODNR register. 

 
The Register Interface provides software access to all the PME registers. 
 
Security Encryption Engine: 

The primary purpose of the Security Encryption Engine (SEE) is to provide hardware 
acceleration to cryptographic algorithms. The SEE implements block encryption algorithms, 
stream cipher algorithms, hashing algorithms, public key algorithms, runtime integrity checking, 
and a hardware random number generator [Fre12]. Figure 23  provides a block diagram of the 
SEE component. 

 
The descriptor is a SEE control structure that instructs the cryptographic hardware modules 

in performing a single task. Each descriptor consists of a sequence of functional commands. 
Conditional and unconditional jumps are permitted to change the program flow or to jump to a 
different descriptor. Three types of descriptors are available: job descriptor, trusted descriptor, 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
66 

and shared descriptor. Job descriptors are typically created by software or via the DPAA. Job 
descriptors do not have access to the trusted descriptor-only black keys, trusted descriptor-only 
blobs, or restricted memory and devices addresses. Job descriptors are also not integrity checked 
at runtime. Trusted descriptors must be created in a specially-privileged job ring, are runtime 
integrity checked, and do have access to the trusted descriptor-only black keys, trusted 
descriptor-only blobs, and restricted memory and device addresses. Shared descriptors are 
constructed to be fetched once and then used by many tasks [Fre12]. 

 

 
 

The job queue controller serves as the descriptor scheduler for the SEE. The job queue 
controller processes jobs using a round-robin scheduler, pulling jobs from the job ring, from the 
DPAA Queue Manager Interface, and then from the Real Time Integrity Checker (RTIC). The 
job queue controller pre-fetches some or all of the descriptors and places them into the holding 
tanks. This pre-fetching permits the job queue controller to take advantage of shared descriptors 
when allocating jobs to descriptor controller pool [Fre12]. 

 
Descriptor controllers (DECO) are responsible for the execution of job descriptors. During 

job descriptor execution, the DECO invokes the DMA controller to read and write to system 

Figure 23: DPAA SE Block Diagram 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
67 

memory addresses specified in the job descriptor. The DECO also needs access to the 
Cryptographic Hardware Accelerators (CHA). The CHA Cluster Block (CCB) contains all the 
hardware required to control the CHA units. Arbitration for shared CHAs is automatically 
handled [Fre12]. Table 22 lists the hardware accelerator and the supported cryptographic 
algorithms. 

 
Table 22:  Cryptographic Hardware Accelerators 

Abbrev. Definition Algorithms 
PKHA Public-Key   hardware  

accelerator 
RSA, Diffie-Hellman, DSA, Elliptic-Curve Diffie- 
Hellman, Elliptic-Curve DSA 

KFHA Kasumi f8 & f9 hardware 
accelerator 

Kasumi f8 encryption, Kasumi f9 authentication 

AFHA ARC-four hardware 
accelerator 

Alleged RC4 encryption 

DESA Data encryption standard 
accelerator 

DES and Triple-DES  encryption 

RNG Random number generator True hardware  random, pseudo-random  number 
generators 

SNOWf8 SNOW 3G f8 accelerator SNOW f8 encryption 
SNOWf9 SNOW 3G f9 accelerator SNOW f9 authentication 
MDHA Message-digest hardware 

accelerator 
MD-5, SHA-1, SHA-256, SHA-384 and SHA-512 

AESA AES accelerator AES encryption 
 
The RTIC participates in the trust architecture to assist with boot authentication and to verify 

the integrity of the system memory. The RTIC is capable of verifying memory contents at both 
system boot and runtime. The RTIC cooperates with a high-assurance, secure boot loader. The 
secure boot loader validates the initial code to execute, then enables the RTIC to hash the normal 
boot image. Once the boot image hash has been calculated, the RTIC generates an interrupt, 
allowing the secure boot loader to compare the calculated hash against a digitally signed hash 
value stored in the secure boot loader. The secure boot loader decides what action to take in the 
event of a hash mismatch. After the secure boot loader has verified the boot image, software can 
put the RTIC into runtime mode to periodically verify the integrity of specific blocks of system 
memory. If the RTIC detects a runtime hash mismatch, an interrupt is generated and a security 
violation is signaled to the security monitor hardware [Fre12]. 

 
The secure key module also participates in the trust architecture. On power-on reset, the SEE 

generates new random keys for the Job Descriptor Key Encryption Key (JDKEK), the Trusted 
Descriptor Key Encryption Key (TDKEK), and the Trusted Descriptor Signing Key (TDSK). 
Both trusted and job descriptors are permitted to encrypt and/or decrypt normal black keys using 
JDKEK, but only trusted descriptors are permitted to encrypt and/or decrypt trusted black keys 
using TDKEK. The TDSK is used to verify trusted descriptors by computing a keyed hash over 
the trusted descriptor [Fre12]. 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
68 

 
 

These secure keys are influenced by the security monitoring hardware state. The SEESEC 
operates in one of the following security modes: trusted mode, secure mode, non-secure mode, 
and fail mode. Figure 24 provides a state diagram showing security monitor states and 
transitions. 

 
The SEE starts in the Init State and transitions to the Check State upon power-on reset. Both 

of these states have the SEE operating in the non-secure mode. The Check State performs various 
hardware and software security checks. If any of these checks fail, the Check State transitions to 
the Non-secure state and remains in the non-secure mode. If all the various hardware and 
software security checks pass, then the Check State transitions to the Trusted State. At this point, 
the SEE is operating in the trusted mode. Software can choose to transition between the Trusted 
State and the Secure State. The SEE operates in secure mode when in the Secure State. If the 
SEE fails specific hardware security checks, the SEE transitions into the Fail State and operates 
in the fail mode. In this mode, all the critical security parameters (including JDKEK, TDKEK, 
and TDSK) are zeroed in accordance with FIPS-140-2. Software may transition from the Fail 
State to the Non-secure state, but the critical security parameters will not be restored until the 
next power-on reset [Fre12]. 

6.1.7 Real Time Debug: 
Not all of the documentation for the Real Time Debug block is publicly available at the time of 
this report writing. The P4080 QorIQ Integrated Multicore Communication Processor Family 
Reference Manual identifies the Advanced QorIQ Debug and Performance Monitoring Guide for 
providing the complete configuration and use of chip-level debug and performance monitoring 
functionality. Specifically, Chapter 3 is listed to be documentation describing the Debug Control 
and Status Registers (DCSR). These DSCR exist in a separate memory map and are devoted to 
debug functionality in the P4080 multicore architecture. Some debug functionality is mapped 

Figure 24: Security Mode State Machine 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
69 

into the Configuration, Control, and Status Register (CCSR) memory space [Fre11c]. Figure 25 
shows a simplified diagram of the major debug components. 

 
The P4080 multicore architecture is populated with debug and performance monitoring 

instrumentation. Debug instrumentation is divided into two categories: function-specific and 
cross-functional. Function-specific debug logic is specialized to help gather data and control a 
specific functional unit. The P4080 multicore architecture supplies function-specific debug logic 
for the following components: CoreNet coherency fabric, CoreNet platform caches, DDR 
external memory, FM, QM, and SEE DPAA components, PCI Express and serial Rapid IO, and 
e500mc processor cores. Each of these functional areas will then forward debug information to 
the cross-functional facilities. The cross-functional components coordinate run control, 
performance monitoring, and tracing operations for the entire P4080 multicore architecture. 
Cross-functional components include the Event Processing Unit (EPU), Nexus Port Controller 
(NPC), Nexus Concentrator (NXC), and Nexus Aurora Link (NAL). 

6.1.8 Hardware Component List 
Table 23 provides a list of the independent, system-high components evaluated for this chapter. 

6.2 IDENTIFY AND EVALUATE INFORMATION FLOWS 
The second step of the framework is to identify information flows and safeguards. 

6.2.1 Processor Core 
The primary function of a processor core is to perform work by executing processor instructions. 
The processor core does this by continually fetching and executing processor instructions. The 
Program Counter (PC) contains the memory address of the next instruction to fetch. Typically, 
after each instruction fetch, the program counter is incremented to fetch the next sequential 
memory instruction. The program counter may be altered by program flow control logic (e.g., 
branch instructions) or interrupts. Interrupts cause the processor core to save context state (MSR 
register) and the next instruction address. The program counter is changed to a predetermined 
interrupt handler [Fre11a]. 

Figure 25: Simplified Real Time Debug Block 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
70 

 
 

Table 23: P4080: Hardware Component List 

Hardware Component Evaluated 
Processor Cores (8) Yes 
CoreNet 
Cornet Coherency Fabric 
CoreNet Platform Caches (2) 

Yes 

DDR2/DDR3 SDRAM Controllers (2) Yes 
Enhanced Local Bus Controller 
  Peripheral Controllers 

Yes 
No 

High Speed Peripheral Interface Complex 
   PCI Express Controllers (3)  

     RapidIO  Message Unit 
   Serial RapidIO Endpoints (2) 
   Direct Memory Access Controllers (2) 

Yes 

Data Path Acceleration Architecture 
   Buffer Manager Queue Manager Frame Managers (2) 
   Pattern Matching Engine 
   Security Encryption Engine 

Yes 

Real Time Debug Yes 
 
 
In addition to executing processor instructions, each processor core also provides three sets 

of registers. The general purpose and floating-point registers are used by the integer and floating-
point execution units. Values in the general purpose and floating-point registers do not affect the 
externally visible state of the processor. Values in the special-purpose registers may cause 
externally visible state changes. 

6.2.1.1 Information Flows 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 
surface color of the polyhedron represents the externally visible state. Using this framework: 

 
• Any information flow breaching any surface of the polyhedron must be evaluated. 
• Any information flow altering the externally visible state must be evaluated. 
• Any information flow not breaching the polyhedron nor modifying the externally 

visible state can be ignored. 
 
Instructions: 

The e500mc processor instruction set analysis provides 227 instructions that are categorized into 
14 categories. Each instruction category was analyzed looking for potential information flows or 
externally visible state changes. Since the hypervisor is assumed to be trusted, instructions 
requiring hypervisor privilege are ignored in this analysis. Instruction categories that cause 
potential information flows or that alter externally visible states are presented in this chapter. The 
other instruction categories are included Appendix B for completeness. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
71 

 
The Branch and Flow instructions (Appendix B, Table 60) affect the state of the program 

counter, count register, and link register. These instructions do not generate information flows 
breaching the polyhedron surface nor do they alter the externally visible state. 

 
The Conditional Branch Control instructions (Table 24) require additional scrutiny. The twi 

and tw instructions cause the program to generate an exception to either IVOR6 (Program) or 
IVOR15 (Debug). While these instructions do not generate information flows breaching the 
polyhedron surface, the hypervisor should pay special attention to how the IVOR6 and IVOR15 
are setup to ensure that a timing covert communication channel is not present. 
 

Table 24: Conditional Branch Control Instructions 

Instruction Mnemonic Privilege Level 
Conditional Register AND crand User 
Conditional Register OR cror User 
Conditional Register XOR crxor User 
Conditional Register NAND crnand User 
Conditional Register NOR crnor User 
Conditional Register Equivalent creqv User 
Conditional Register AND with Complement crandc User 
Conditional Register OR with Complement crorc User 
Move Condition register Field mcrf User 
Trap Word Immediate twi User 
Trap Word tw User 
Integer Select isel User 

 
The Debug instructions (Table 25) require additional scrutiny. When an external debugger is 

attached and the e500mc core is configured to halt on the execution of the dhn instruction, this 
instruction causes the e500mc processor core to halt and wait for the external debugger. If the 
dhn instruction is executed when an external debugger is not attached or if the e500mc core is 
not configured to halt on the execution of the dhn instruction, an illegal instruction exception is 
generated. While this instruction does not generate an information flow breaching the 
polyhedron surface, the hypervisor should pay special attention to ensure this instruction cannot 
be used as a covert communication channel. 

 
Table 25: Debug Instructions 

Instruction Mnemonic Privilege Level 
Debug Notify Halt dnh User 

 
The Memory Synchronization instructions (Table 26) require additional scrutiny. These 

instructions control memory operation completion and visibility to the other components 
accessing memory. The mbar and msync instructions support options to broadcast memory 
coherency information on the CoreNet interface. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
72 

Table 26: Memory Synchronization Instructions 

Instruction Mnemonic Privilege Level 
Instruction Synchronization isync User 
Load Word and Reserve Indexed lwarx User 
Memory Barrier mbar User 
Memory Synchronize msync User 
Store Word Conditional Indexed stwcx. User 

 
The Floating-Point instructions (Appendix B, Table 61), Floating-Point Arithmetic 

instructions in Table 63, Floating-Point Compare instructions in Table 64, Floating-Point 
Rounding and Conversion instructions in Table 65, and Floating-Point Status and Control 
Register instructions (Appendix B, Table 62) do not generate information flows breaching the 
polyhedron surface nor do they alter the externally visible state. 

 
The Processor Control instructions (Table 27) require additional scrutiny. The mtspr writes 

values to the special purpose registers. The special purpose registers are described in additional 
detail after the processor instruction analysis is complete. Modification of the special purpose 
register values may cause an information flow to breach the polyhedron surface or alter the 
externally visible state. 

 
Table 27: Processor Control Instructions 

Instruction Mnemonic Privilege Level 
Move to Conditional Register Fields mtcrf User 
Move to Conditional Register from XER mcrxr User 
Move from Condition Register mfcr User 
Move from Once Condition Register Field mfocrf User 
Move to One Condition Register Field mtocrf User 
Move to Special-Purpose Register mtspr User 
Move from Special-Purpose Register mfspr User 
Move from Time Base mftb User 
Wait for Interrupt wait User 
Move from Performance Monitor  Register mfpmr User 
Move to Performance Monitor  Register mtpmr Guest Supervisor 

 
The Integer instructions (Appendix B, Table 66) do not generate information flows that 

breach the polyhedron surface nor do they alter the externally visible state. 
 
The Load and Store instructions (Table 28) generate information flows breaching the 

polyhedron surface. The purpose of these instructions is to move information to and from the 
main memory hierarchy. The e500mc also supports decorated load and store instructions and 
external PID load and store instructions. Decorated load and store instructions provide efficient 
access to System-On-a-Chip (SoC) specific storage addresses. External PID instructions are used 
to load and store addresses into a different address space. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
73 

Table 28: Load and Store Instructions 
Instruction Mnemonic Privilege Level 
Load Byte and Zero lbz User 
Load Byte and Zero Indexed lbzx User 
Load Byte and Zero with Update lbzu User 
Load Byte and Zero with Update Indexed lbzux User 
Load Half Word and Zero lhz User 
Load Half Word and Zero Indexed lhzx User 
Load Half Word and Zero with Update lhzu User 
Load Half Word and Zero with Update Indexed lhzux User 
Load Half Word Algebraic lha User 
Load Half Word Algebraic Indexed lhax User 
Load Half Word Algebraic with Update lhau User 
Load Half Word Algebraic with Update Indexed lhaux User 
Load Word and Zero lwz User 
Load Word and Zero Indexed lwzx User 
Load Word and Zero with Update lwzu User 
Load Word and Zero with Update Indexed lwzux User 
Store Byte stb User 
Store Byte Indexed stbx User 
Store Byte with Update stbu User 
Store Byte with Update Indexed stbux User 
Store Half Word sth User 
Store Half Word Indexed sthx User 
Store Half Word with Update sthu User 
Store Half Word with Update Indexed sthux User 
Store Word stw User 
Store Word Indexed stwx User 
Store Word with Update stwu User 
Store Word with Update Indexed stwux User 
Load Half Word Byte-Reversed Indexed lhbrx User 
Load Word Byte-Reversed Indexed lwbrx User 
Store Half Word Byte-Reversed Indexed sthbrx User 
Store Word Byte-Reversed Indexed stwbrx User 
Load Multiple Word lmw User 
Store Multiple Word stmw User 
Load Floating-Point Single lfs User 
Load Floating-Point Single Indexed lfsx User 
Load Floating-Point Single with Update lfsu User 
Load Floating-Point Single with Update Indexed lfsux User 
Load Floating-Point Double lfd User 
Load Floating-Point Double Indexed lfdx User 
Load Floating-Point Double with Update lfdu User 
Load Floating-Point Double with Update Indexed lfdux User 
Store Floating-Point Single stfs User 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
74 

Store Floating-Point Single Indexed stfsx User 
Store Floating-Point Single with Update stfsu User 
Store Floating-Point Single with Update Indexed stfsux User 
Store Floating-Point Double stfd User 
Store Floating-Point Double Indexed stfdx User 
Store Floating-Point Double with Update stfdu User 
Store Floating-Point Double with Update Indexed stfdux User 
Store Floating-Point as Integer Word Indexed stfiwx User 
Load Byte with Decoration Indexed lbdx User 
Load Half Word with Decoration Indexed lhdx User 
Load Word with Decoration Indexed lwdx User 
Load Floating-Point Double Word w/ Decoration Indexed lfddx User 

 Store Byte with Decoration Indexed stbdx User 
Store Half Word with Decoration Indexed sthdx User 
Store Word with Decoration Indexed stwdx User 
Store Floating-Point  Double Word with Decoration 

 
stfddx User 

Decorated Storage Notify dsn User 
Load Byte by External PID Indexed lbepx Guest Supervisor 
Load Floating-Point Double Word by External PID 

 
lfdepx Guest Supervisor 

Load Half Word by External PID Indexed lhepx Guest Supervisor 
Load Word by External PID Indexed lwepx Guest Supervisor 
Store Byte by External PID Indexed stbepx Guest Supervisor 
Store Floating-Point  Double Word by External PID 

 
stfdepx Guest Supervisor 

Store Half Word by External PID Indexed sthepx Guest Supervisor 
Store Word by External PID Indexed stwepx Guest Supervisor 
Load Byte by External PID Indexed lbepx Guest Supervisor 
Load Floating-Point Double Word by External PID 

 
lfdepx Guest Supervisor 

Load Half Word by External PID Indexed lhepx Guest Supervisor 
Load Word by External PID Indexed lwepx Guest Supervisor 
Store Byte by External PID Indexed stbepx Guest Supervisor 
Store Floating-Point  Double Word by External PID 

 
stfdepx Guest Supervisor 

Store Half Word by External PID Indexed sthepx Guest Supervisor 
Store Word by External PID Indexed stwepx Guest Supervisor 
Load Byte by External PID Indexed lbepx Guest Supervisor 
Load Floating-Point Double Word by External PID 

 
lfdepx Guest Supervisor 

Load Half Word by External PID Indexed lhepx Guest Supervisor 
Load Word by External PID Indexed lwepx Guest Supervisor 
Store Byte by External PID Indexed stbepx Guest Supervisor 
Store Floating-Point  Double Word by External PID 

 
stfdepx Guest Supervisor 

Store Half Word by External PID Indexed sthepx Guest Supervisor 
Store Word by External PID Indexed stwepx Guest Supervisor 
Data Cache Block Flush by External PID Indexed dcbfep Guest Supervisor 
Data Cache Block Store by External PID Indexed dcbstep Guest Supervisor 
Data Cache Block Touch by External PID Indexed dcbtep Guest Supervisor 

Data Cache Block  
       

dcbtstep Guest Supervisor 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
75 

Data Cache Block Zero by External PID Indexed dcbzep Guest Supervisor 
Data Cache Block Zero Long by External PID Indexed dcbzlep Guest Supervisor 
Instruction  Cache Block Invalidate by External PID Indexed icbiep Guest Supervisor 
 
The Memory Control instructions (Table 29) generate information flows breaching the 

polyhedron surface. These instructions control the instruction caches, the data caches, and the 
TLB entries. The dcblc, dcbtls, dcbtstls, icbtls, and icblc instructions have a configurable 
privilege level. Hypervisor privilege is required to execute these instructions when the UCLEP 
bit is set in the Machine State Register (MSR) and the Machine State Register Protect (MSRP) 
registers. The tlbix instruction will cause a hypervisor exception to be thrown if the DGTMI bit 
is set in the Embedded Processor Control Register (EPCR). 

 
Table 29: Memory Control Instructions 

Instruction Mnemonic Privilege Level 
Data Cache Block Allocate dcba User 
Data Cache Block Allocate  by Line dcbal User 
Data Cache Block Flush dcbf User 
Data Cache Block Set to Zero dcbz User 
Data Cache Block Set to Zero by Line dcbzl User 
Data Cache Block Store dcbst User 
Data Cache Block Touch dcbt User 
Data Cache Block Touch for Store dcbtst User 
Instruction  Cache Block Invalidate icbi User 
Instruction  Cache Block Touch icbt User 
Data Cache Block Lock Clear dcblc User 
Data Cache Block Touch and Lock Set dcbtls User 
Data Cache Block Touch for Store and Lock Set dcbtstls User 
Instruction  Cache Block Lock Clear icblc User 
Instruction  Cache Block Touch and Lock Set icbtls User 
Data Cache Block Invalidate dcbi Guest Supervisor 
TLB Invalidate Local tlbilx Guest Supervisor 
TLB Invalidate Virtual Address Indexed tlbivax Hypervisor 
TLB Read Entry tlbre Hypervisor 
TLB Search Indexed tlbsx Hypervisor 
TLB Synchronize tlbsync Hypervisor 
TLB Write Entry tlbwe Hypervisor 
Message Clear msgclr Hypervisor 
Message Send msgsnd Hypervisor 
 
The System Linkage instructions (Table 30) do not cause information flows that breach the 

polyhedron surface, but they may alter the externally visible state. The rfi, rfdi, rfmci, rfci, and 
rfgi instructions are all used to exit an interrupt state and return to normal processing mode. The 
ehpriv instruction calls the hypervisor Interrupt Vector Offset Register (IVOR). The mfmsr and 
mtmsr provide access to alter some bits in the MSR. The MSR presents a significant amount of 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
76 

flexibility and external visible state potential. The wrtee and wrteei instructions allow the guest 
supervisor to enable and/or disable external interrupts. 

 
Registers: 
Analysis of the e500mc processor separates the registers into 15 categories. Since the 

hypervisor is assumed to be trusted, registers requiring hypervisor privilege are ignored in this 
analysis. Register categories that cause potential information flows or that alter the externally 
visible state are presented in this chapter (Table 32 - Table 43). The other register categories are 
referenced in Table 31, but included in Appendix B for completeness. 

 
Table 30: System Linkage Instructions 

Instruction Mnemonic Privilege Level 
System Call sc User 
Return from Interrupt rfi Guest Supervisor 
Return from Debug Interrupt rfdi Hypervisor 
Return from Machine Check Interrupt rfmci Hypervisor 
Return from Critical Interrupt rfci Hypervisor 
Return from Guest Interrupt rfgi Guest Supervisor 
Hypervisor Privilege ehpriv Guest Supervisor 
Move from Machine State Register mfmsr Guest Supervisor 
Move to Machine State Register mtmsr Guest Supervisor 
Write MSR External Enable wrtee Guest Supervisor 
Write MSR External Enable Immediate wrteei Guest Supervisor 
 

Table 31: No Information Flow or Externally Visible State Change Register Categories 

Register Category Table 
General Purpose Registers Appendix B, Table 67 
Floating-Point Registers Appendix B, Table 68 
Branch Registers Appendix B, Table 69 
Branch Control 
      

Appendix B, Table 70 
Hardware Implementation Dependent Register Appendix B, Table 71 
L1 Cache Registers Appendix B, Table 72 
L2 Cache Registers Appendix B, Table 73 
MMU Registers Appendix B, Table 74 
Performance Monitoring  Registers Appendix B, Table 75 

 
Table 32: Process Control Registers 

Register Mnemonic SPR # Privilege Level 
Machine State Register MSR  Guest Supervisor 
Machine State Register Protect MSRP 311 Hypervisor 
Embedded Processor Control  Register EPCR 307 Hypervisor 
Processor Version Register PVR 287 Guest Supervisor RO 
System Version Register SVR 1023 Guest Supervisor RO 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
77 

The following bits are supported in the MSR: 
 
• GS - Guest State. When set, the processor is running in guest mode. 
• UCLE - User-mode Cache Lock Enabled. When set, user-mode cache locks do not make 

non-access violation exceptions. 
• CE - Critical Interrupts. When set, critical input, processor doorbell critical, guest 

processor doorbell, and watchdog timer interrupt are enabled. 
• EE - External Enabled. When set, external interrupts, decremented, fixed-interval timer, 

processor doorbell, guest processor doorbell, and embedded performance monitor 
interrupts are enabled. 

• PR - User Mode. When set, the processor is running in user mode. 
• FP - Floating-point available. When set, floating-point instructions are permitted to 

execute. 
• ME - Machine check enable. When set, machine check interrupts are enabled. 
• FE[01] - Floating-point exception mode. Freescale processor only implement precise 

exception mode. 
• DE - Debug interrupt. When set, debug interrupts are enabled. 
• IS - Instruction address space. When set, processor directs all instruction fetches to 

address space 1. Otherwise instruction fetches are directed to address space 0. 
• DS - Data address space. When set, processor directs all data memory access to address 

space 1. Otherwise data memory access is directed to address space 0. 
• Performance Monitoring Mark. When set, the process is marked for gather statistic data 

from. 
• Recoverable Interrupt. When set, it is safe to return from a machine check, error report, 

or a non-maskable interrupt. 
 
The MSRP register controls if the guest supervisor state is permitted to alter the UCLE, DE, 

and PMM bits in the MSR. 
 
The EPCR offers limited interrupt direction control (i.e., are interrupts directed to the 

hypervisor state or to the guest supervisor state). The EPCR[DUVD] bit permits the disabling of 
debug events when running in the hypervisor mode. The EPCR[DGTMI] controls whether the 
TLB management instructions are available when running in guest supervisor mode. The 
EPCR[DMIUH] bit controls if the MAS registers are updated when running in the hypervisor 
mode. 

 
The PVR and SVR registers provide read-only processor and SoC version values. Table 33 

lists the registers provided in each processor core timing functions. The e500mc processor 
permits the Decrementer Auto-Reload Register (DECAR) to be read. This is a deviation from the 
architecture which defines the DECAR as Hypervisor WO. 

 
Table 34 lists the registers provided in each processor to support interrupts. 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
78 

Table 33: Timer Registers 

Register Mnemonic SPR # Privilege 
 Time Control Register TCR 340 Hypervisor 

Timer Status Register TSR 336 Hypervisor 
R/- 

 Time Base(R) TBU,TBL 268,26
 

User RO 
Time Base(W) TBU,TBL 284,28

 
Hypervisor 

 Decrementer Register DEC 22 Hypervisor 
Decrementer Auto-Reload Register DECAR 54 Hypervisor 
Alternate Time Base Registers ATBL,ATBU 526, 

527 
User RO 

 
 

Table 34: Interrupt Registers 

Register Mnemonic SPR # Privilege Level 
Standard Save/Restore Registers SRR0, SRR1 26,27 Guest 

 Critical Save/Restore Registers CSRR0, 
 

58,59 Hypervisor 
Debug Save/Restore Registers DSRR0, 

DSRR1 
574,57

5 
Hypervisor 

Machine Check Save/Restore Registers MCSRR0, 
MC- 

 

570,57
1 

Hypervisor 

Guest Save/Restore Registers GSRR0, 
GSRR1 

378,37
9 

Guest 
Supervisor 

Data Exception Address Register DEAR 61 Guest 
 Guest Data Exception Address Register GDEAR 381 Guest 
 Interrupt Vector Prefix Register IVPR 63 Hypervisor 

Guest Interrupt Vector Prefix Register(R) GIVPR 447 Guest 
Supervisor 

 Guest Interrupt Vector Prefix Register(RW) GIVPR 447 Hypervisor 
Critical input interrupt offset IVOR0 400 Hypervisor 
Machine check interrupt offset IVOR1 401 Hypervisor 
Data storage interrupt offset IVOR2 402 Hypervisor 
Instruction storage interrupt offset IVOR3 403 Hypervisor 
External input interrupt offset IVOR4 404 Hypervisor 
Alignment interrupt offset IVOR5 405 Hypervisor 
Program interrupt offset IVOR6 406 Hypervisor 
Floating-point unavailable interrupt offset IVOR7 407 Hypervisor 
System call interrupt offset IVOR8 408 Hypervisor 
Auxiliary processor unavailable interrupt IVOR9 409 Hypervisor 
Decrementer interrupt offset IVOR10 410 Hypervisor 
Fixed-interval timer interrupt offset IVOR11 411 Hypervisor 
Watchdog timer interrupt offset IVOR12 412 Hypervisor 

Data TLB error interrupt offset IVOR13 413 Hypervisor 
Instruction TLB error interrupt offset IVOR14 414 Hypervisor 
Debug interrupt offset IVOR15 415 Hypervisor 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
79 

Performance monitor interrupt offset IVOR35 531 Hypervisor 
Processor doorbell interrupt  offset IVOR36 532 Hypervisor 
Processor doorbell critical  interrupt  offset IVOR37 533 Hypervisor 
Guest processor doorbell interrupt offset IVOR38 432 Hypervisor 
Guest processor doorbell critical and 

machine 
   

IVOR39 433 Hypervisor 

Hypervisor system call interrupt offset IVOR40 434 Hypervisor 
Hypervisor privilege interrupt offset IVOR41 435 Hypervisor 
Guest data storage interrupt offset GIVOR2 440 Hypervisor 
Guest instruction  storage interrupt offset GIVOR3 441 Hypervisor 
Guest external input interrupt offset GIVOR4 442 Hypervisor 
Register Mnemonic SPR # Privilege Level 
Guest system call interrupt offset GIVOR8 443 Hypervisor 
Guest data TLB error interrupt offset GIVOR13 444 Hypervisor 
Guest instruction TLB error interrupt offset GIVOR14 445 Hypervisor 
External proxy register EPR 702 Guest 

 
 

Guest external proxy register GEPR 380 Guest 
 Exception syndrome register ESR 62 Guest 
 Guest exception syndrome register GESR 383 Guest 
 Processor ID register PIR 286 Guest 
 Guest processor ID register GPIR 382 Guest 
 Machine  check address register MACR 573 Hypervisor RO 

Machine  check address register upper MACRU 569 Hypervisor RO 
Machine check syndrome register MCSR 572 Hypervisor 

 
When the processor core is running in guest-mode, several of the interrupt registers are 

automatically mapped to the corresponding guest registers. Table 35 defines the automatic 
mappings when the processor is running in guest-mode. 

 
Table 35: Guest-mode Mapped Interrupt Registers 

Register Accessed Mapped Register 
SRR0 GSRR0 
SRR1 GSRR1 
EPR GEPR 
ESR GESR 
DEAR GDEAR 
PIR GPIR 

 
Table 36 lists the software-use SPRs provided for each processor core. When the processor 

core is running in guest-mode, six of the software SPRs are automatically mapped to the 
corresponding guest register. Table 37 defines the automatic mappings when the processor is 
running in guest-mode. 

 
The core device and control register (Table 38) provides an interface for the hypervisor to 

query and configure specific processor operations. This allows the hypervisor the ability to detect 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
80 

and take advantage of specific processor capabilities; as well as the option to disable some 
processor capabilities to assist in board layout and power management. The CDCSR0 register 
provides configurable support for the floating-point core device and instructions in the e500mc 
[Fre11a, Fre11b]. 

 
Table 36: Software Use Special-Purpose Registers 

Register Mnemonic SPR # Privilege Level 
SPR general 0 SPRG0 272 Guest supervisor 
SPR general 1 SPRG1 273 Guest supervisor 
SPR general 2 SPRG2 274 Guest supervisor 
SPR general 3(R) SPRG3 259 User RO 
SPR general 3(RW) SPRG3 275 Guest supervisor 
SPR general 4(R) SPRG4 260 User RO 
SPR general 4(RW) SPRG4 276 Guest supervisor 
SPR general 5(R) SPRG5 261 User RO 
SPR general 5(RW) SPRG5 277 Guest supervisor 
SPR general 6(R) SPRG6 262 User RO 
SPR general 6(RW) SPRG6 278 Guest supervisor 
SPR general 7(R) SPRG7 263 User RO 
SPR general 7(RW) SPRG7 279 Guest supervisor 
SPR general 8 SPRG8 604 Hypervisor 
SPR general 9 SPRG9 605 Guest supervisor 
Guest SPR general 0 GSPRG0 368 Guest supervisor 
Guest SPR general 1 GSPRG1 369 Guest supervisor 
Guest SPR general 2 GSPRG2 370 Guest supervisor 
Guest SPR general 3 GSPRG3 371 Guest supervisor 
User SPR general 0 USPRG0 

(VRSAVE) 
256 User 

 
Table 37: Guest-mode Mapped Software Use Special-Purpose Registers 

Register Accessed Mapped Register 
SPGR0 GSPGR0 
SPGR1 GSPGR1 
SPGR2 GSPGR2 
SPGR3(R) GSPGR3 
SPGR3(RW) GSPGR3 

 
Table 38: Core Device Control and Status Register 

Register Mnemonic SPR # Privilege Level 
Core device control and status register 0 CDCSR0 696 Hypervisor 
 
Table 39 lists the internal debug registers. The following internal debug registers are defined 

by Power ISA 2.06: DBCR3, IAC3, IAC4, DVC1, and DVC2, but are unimplemented in the 
e500mc processor [Fre11a]. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
81 

 
Table 39: Internal Debug Registers 

Register Mnemonic SPR # Privilege Level 
Debug control register 0 DBCR0 308 Hypervisor 
Debug control register 1 DBCR1 309 Hypervisor 
Debug control register 2 DBCR2 310 Hypervisor 
Debug control register 4 DBCR4 563 Hypervisor 
Debug status register DBSR 304 Hypervisor R/Clear 
Debug status register write DBSRWR 306 Hypervisor 
Instruction address compare 1 IAC1 312 Hypervisor 
Instruction address compare 2 IAC2 313 Hypervisor 
Data address compare 1 DAC1 316 Hypervisor 
Data address compare 2 DAC2 317 Hypervisor 
Nexus SPR access configuration NSPC 984 Hypervisor 
Nexus SPR access data NSPD 983 Hypervisor 
Debug event DEVENT 975 User 
Debug data acquisition  message DDAM 576 User 
Nexus processor ID register NPIDR 517 User 
 

Table 40: L1 Cache: Special Purpose Registers 

Special Purpose Registers Cache Privilege Level 
L1 Cache Configuration  register 0 (L1CFG0) Data User RO 
L1 Cache Configuration  register 1 (L1CFG1) Instruction User RO 
L1 Cache Control and Status Register 0 (L1SCR0) Data Hypervisor 
L1 Cache Control and Status Register 1 (L1SCR1) Instruction Hypervisor 
L1 Cache Control and Status Register 2 (L1SCR1) Data Hypervisor 
 
Level 1 Cache: 

Each processor core has a private Level 1 (L1) instruction and data cache. Table 40 lists the five 
special-purpose registers used for the configuration, status, and control of these L1 caches. 

 
The L1CFG0 and L1CFG1 registers provide read-only L1 cache configuration information to 

software. Both the instruction and data caches are non-blocking, physically addressed, and 32 
Kbytes in size. The caches are organized as 64, eight-way sets of 64-byte cache lines. Both the 
caches provide parity, individual cache line locking, and implement a pseudo Least Recently 
Used (LRU) algorithm for cache line replacement. 

 
The L1SCR0, L1SCR1, and L1SCR2 registers provide configuration and status for the L1 

caches. The L1SCR0 and L1SCR1 registers control if the caches are: disabled or enabled, 
injecting cache faults, or reporting single-bit parity errors. These registers also provide status 
information useful for diagnostics. The L1SCR2 register provides additional control for the L1 
data cache. Specifically, it configures the data cache write shadow and the data cache stash ID. 
Data cache write shadowing provides additional fault tolerance by using the Level 2 (L2) cache 
as a backup. If a failure occurs in the L1 cache, the data is recovered from the L2 cache. The data 
cache stash ID provides a cache target identifier to permit external devices to stash data in this 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
82 

processors L1 data cache. Data cache stash IDs between one and seven are illegal. Data cache 
stash ID of zero disables data cache stashing in this L1 data cache. Cache operations on the 
e500mc processor are never aborted. Cache lines are loaded in a single clock cycle. Any 
buffering required before the cache line load must be performed in the CoreNet interface. 

 
L2 Cache: 

Each processor core also has a private Level 2 (L2) backside cache. This cache is physically 
implemented as a dynamic Harvard architecture (i.e., a single, unified cache for both instructions 
and data, but provides Harvard architecture properties by providing different behaviors for the 
instruction and data cache entries). Instructions fetched into the L2 cache are marked with the N 
status bit to denote that the cache line was loaded incoherently.   
 

Table 41 lists the special purpose registers used for the configuration, status, and control of 
the L2 cache. 

Table 41: L2 Cache: Special Purpose Registers 

Special Purpose Registers Privilege Level 
L2 Cache Configuration  register 0 (L2CFG0) User RO 
L2 Cache Control and Status Register 0 (L2SCR0) Hypervisor 
L2 Cache Control and Status Register 1 (L2SCR1) Hypervisor 
L2 Cache Error Disable Register (L2ERRDIS) Hypervisor 
L2 Cache Error Detect Register (L2ERRDET) Hypervisor 
L2 Cache Error Interrupt Enable Register (L2ERRINTEN) Hypervisor 
L2 Cache Error Control Register (L2ERRCTL) Hypervisor 
L2 Cache Error Address Capture Registers 
(L2ERRADDR, L2ERREADDR) 

Hypervisor 

L2 Cache Error Capture Data Registers 
(L2ERRDATALO, L2ERREDATAHI) 

Hypervisor 

L2 Cache Error Capture ECC Syndrome Register (L2CAPTECC) Hypervisor 
L2 Cache Error Attribute  Register (L2ERRATTR) Hypervisor 
L2 Cache Error Injection  Control Register (L2ERRINJCTL) Hypervisor 
L2 Cache Error Injection  Mask Registers 
(L2ERRINJLO, L2ERRINJHI) 

Hypervisor 

 
 
The L2CFG0 register provides the read-only organization and capabilities for the L2 cache to 

software. The L2 cache is 128 Kbytes in size and is organized as 256, eight-way sets of 64-byte 
cache lines. This cache provides parity L2 cache tag error handling, parity and ECC L2 cache 
data error handling, instruction and data partitioning, individual cache line locking, and a choice 
of pseudo-LRU, streaming PLRU, or streaming PLRU with the aging cache line replacement 
algorithms. 

 
The L2CSR0 and L2CSR1 registers provide general control and status information for the L2 

cache. The L2CSR0 register controls if the cache is disabled or enabled, if ECC error checking is 
enabled or disabled, the L2 cache line replacement algorithm, and various cache flushing 
methods. The L2CSR0 also provides cache partitioning support. Cache partitioning specifies 
how many ways should be used for instructions and how many ways should be used for data. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
83 

The L2CSR1 register controls L2 instruction loss limits and L2 snoop win limits. The L2CSR 
also provides bits to store the data cache stash ID. Similar to the L1 data cache, data stash ids 
between one and seven are illegal and a data stash ID of zero disables stashing in the L2 cache. 

 
The L2 Cache error registers provide error detection and reporting. The L2ERRINJCTL 

register permits the injection of ECC and parity errors into the L2 cache for testing purposes 
[Fre11a]. 

 
Cache Stashing: 

The P4080 architecture supports peripheral devices to preload (i.e., stash) data into the L1 data 
and/or the unified L2 cache. Cache stashing is intended as a performance hint from the peripheral 
by pre-populating the caches with data before the processor core needs to request it. The 
processor core is a passive recipient of the cache stashing operation [Fre11a]. 
 

CoreNet Bus Interface Unit: 
The CoreNet bus interface provides the primary interface from each processor core to the reset of 
the P4080 architecture. 

 
Interrupts: 

Interrupts cause the processor to alter the program flow by: (1) saving the next instruction 
address and current processor context information, (2) beginning the execution of the interrupt 
handler at a pre-determined address location, and (3) resuming program flow by restoring the 
context information and executing the save instruction address. In the P4080 multicore 
architecture, the Multicore Programmable Interrupt Controller (MPIC) manages the routing and 
delivery of interrupts from SoC components to the processor cores. 
 

Table 42 provides the Interrupt Vector Offset Register (IVOR) (i.e., the interrupt number) 
and the description for the e500mc interrupts [Fre11a]. 

6.2.1.2 Safeguards 
Cache Stashing: 

Cache stashing can be prohibited in the L1 data cache by configuring the Data Cache Stash ID 
value in the L1 Cache Control and Status Register 2 (L1CSR2) register to 0. Cache stashing in 
the unified L2 cache can be prohibited by configuring the L2 Cache Stash ID value in the L2 
Cache Control and Status Register 1 (L2CSR1) register to 0. Both the L1CSR2 and L2CSR1 
special-purpose registers require hypervisor privileges to read and write. 
 

Alternatively, clearing the DCE bit in the L1 Cache Control and Status Register 0 (L1CSR0) 
register and clearing the L2E bit in the L2 Cache Control and Status Register 0 (L2CSR0) 
register will disable both the L1 data cache and the unified L2 cache [Fre11a]. 

 
 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
84 

Table 42: P4080 All IVORs 

IVOR Interrupt 
IVOR0 Critical Input 
IVOR1 Machine Check, Error Report 
IVOR2,GIVOR2 Data Storage (DSI) 
IVOR3,GIVOR3 Instruction Storage (ISI) 
IVOR4,GIVOR4 External Interrupt 
IVOR5 Alignment 
IVOR6 Program 
IVOR7 Floating-Point Unavailable 
IVOR8,GIVOR System Call 
IVOR10 Decrementer 
IVOR11 Fixed Interval Timer 
IVOR12 Watchdog 
IVOR13,GIVOR13 Data TLB Error 
IVOR14,GIVOR13 Instruction TLB Error 
IVOR15 Debug 
IVOR35 Performance Monitor 
IVOR36 Processor Doorbell 
IVOR37 Processor Doorbell Critical 
IVOR38 Guest Processor Doorbell 
IVOR39 Guest Processor Doorbell Critical/ Doorbell Machine Check 
IVOR40 Hypervisor System Call 
IVOR41 Hypervisor Privilege 

 

Table 43: P4080 Maskable IVORs 

IVOR Enabled by 
IVOR0 MSR[CE] or MSR[GS] 
IVOR1 MSR[ME] or MSR[GS] 
IVOR4,GIVOR4 MSR[EE] or MSR[GS] 
IVOR6 Floating Point Exception: MSR[FE0][FE1] 
IVOR10 (MSR[EE] or MSR[GS])  and TCR[DIE] 
IVOR11 (MSR[EE] or MSR[GS])  and TCR[FIE] 
IVOR12 (MSR[EE] or MSR[GS])  and TCR[WIE] 
IVOR15 MSR[DE]  and DBCR0[IDM] 
IVOR35 MSR[EE] or MSR[GS] 
IVOR36 MSR[EE] or MSR[GS] 
IVOR37 MSR[CE] or MSR[GS] 
IVOR38 MSR[EE]  and MSR[GS] 
IVOR39 Critical: (MSR[CE] and MSR[GS]  Machine Check: MSR[ME] 

and MSR[GS] 
 
Interrupts: 

The P4080 multicore architecture supports interrupt masking in both the e500mc processor core 
and in the MPIC. Table 43 lists which IVORs are maskable and how to mask them. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
85 

 
Disable Component: 

The CONFIG_COREDISR register provides eight bits to represent the state of each processor 
core. Each processor core can individually be disabled by writing a value of one to the 
appropriate bit in the CONFIG_COREDISR register. 

6.2.2 CoreNet Coherency Fabric 
This section provides the information flow analysis of the CoreNet described in Section 6.1.2. 

6.2.2.1 Information Flows 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 
surface color of the polyhedron represents the externally visible state. Using this framework: 

 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally visible 

state can be ignored. 
 
The CoreNet coherency fabric is the primary communication bus for the P4080 multicore 

architecture. The CoreNet coherency fabric provides 32 address ranges called Local Access 
Windows (LAWs). All system addresses, with the exception of the boot window and 
configuration space mapped by the CCSRBAR register, must be mapped by a LAW. The lowest-
numbered LAW takes precedence when addresses are mapped to multiple LAWs [Fre11c]. 

 
Bus Transactions: 

CoreNet coherency fabric bus transactions provide information flows to every component in the 
system. 
 

CoreNet Coherency Cache: 
CoreNet transactions, with proper destination addresses, breach the abstract polyhedron 
surrounding the CoreNet coherency cache. Information flows may pass through the CoreNet 
coherency fabric to the DDR memory controllers if the CoreNet transaction is a write or when 
the address is not present in the CoreNet coherency cache. 

 
Interrupts: 

The CoreNet coherency fabric components provide two interrupts. The first interrupt (8) is 
dedicated to PAMU access violations. The second interrupt is shared by multiple components. 
The CoreNet coherency fabric, CoreNet coherency cache, and PAMUs generate this shared 
interrupt when internal error conditions occur. 

6.2.2.2 Safeguards 
Peripheral Access Management Unit: 

Each PAMU is configured to reject all transactions by default. The LIODN must be configured 
for each master capable device behind the PAMU. In normal mode, the hypervisor must 
configure each memory regions in the PAMU with appropriate permissions. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
86 

The PAMUx_PC (where x is the PAMU number) provides a PE (PAMU Enabled) bit and 
PGC (PAMU Gate Check) bit. When the PGC bit is set, the PAMU blocks all peripheral 
accesses. When the PGC bit is set and the PE is cleared, the PAMU also blocks all peripheral 
accesses. When the PGC and PE bits are both set, then the PAMU performs the authorization and 
translation functions. 

 
The DCFG_PAMUBYPENR register contains control bits for enabling the PAMU bypass 

mode for each PAMU. 

6.2.3 CoreNet Coherency Cache 
This section provides the information flow analysis of the CoreNe0 coherency cache described in 
Section 6.1.3. 

6.2.3.1 Safeguards 
Although, the CoreNet platform cache provides no ability to restrict information flows entering, 
leaving, or going through it; it does provide a safeguard for the cache replacement policy. When 
a cache miss occurs, the CoreNet platform will look up by partition, action, and way to 
determine the appropriate cache replacement policy. The CoreNet platform cache can also be 
disabled, thus defining two externally visible states: enabled and disabled. 

6.2.4 Enhanced Local Bus Controller 
This section provides the information flow analysis of the bus controller from Section 6.1.4 

6.2.4.1 Information Flows 
Due to the coupling between the attached peripherals, the abstract polyhedron completely 
encloses the eLBC and the attached peripherals. 

 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 

surface color of the polyhedron represents the externally visible state. Using this framework: 
 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally visible 

state can be ignored. 
 
Bus Transactions: 

Local bus transactions are the primary information flow through the enhanced Local Bus 
Controller (eLBC). Local bus transactions may be initiated either from some device connected to 
the CoreNet coherency fabric or by another peripheral connected to the eLBC. 

 
Interrupts: 

The eLBC provides two interrupt lines. The first interrupt (9) is dedicated to the eLBC. This 
interrupt multiplexes the interrupt lines for the miscellaneous peripheral devices. The second 
interrupt is shared by multiple components. The eLBC may generate this interrupt when internal 
error conditions occur. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
87 

Boot Device: 
The P4080 architecture supports booting from the flash that is attached to the FCM peripheral 
interface controller. 

6.2.4.2 Safeguards 
Interrupts: 

Both interrupt lines are routed to the Multicore Programmable Interrupt Controller. The MPIC 
permits both of these interrupts to be masked independently. If masking is not desired, the MPIC 
also provides configurable options for priority and processor core destinations for both 
interrupts. 

 
Masking the shared interrupt at the MPIC may be heavy handed. The eLBC provides fine-

grained control over the eLBC-generated interrupts via the eLBC_LTEIR register. The eLBC 
does not provide fine-grained control for interrupt 9 used by the eLBC peripherals. 
 

Boot Device: 
The P4080 multicore architecture provides a trust architecture (consisting of hardware and 
software) to provide a secure boot environment. At the time of writing, not all of the 
documentation for the trust architecture was publicly released from Freescale and the 
implementation details are beyond the scope of this project. 

 
Disable Component: 

Setting bit 19 in the CONFIG_DEVDISR1 register will disable the eLBC component. Setting bit 
29 and/or 30 in the DCFG_ELBCCLKDR register will disable one or both of the eLBC clocks. 

 
Components on the eLBC bus can be disabled by setting the appropriate bits in the 

CONFIG_DEVDISR1 register. 

6.2.5 Data Path Acceleration Architecture: Individual Components 
Initial framework analysis treats each component in the DPAA (i.e., BM, QM, FM, SEC, and 
PME) as individual system-high compartments. Each component is fully enclosed in its own 
abstract polyhedron. Information flows breaching the abstract polyhedron or externally visible 
events require mitigating safeguards. However, as the following analysis of BM demonstrates, 
there are insufficient safeguards in place when the DPAA component is treated (i.e., analyzed) as 
a set of individual components. For brevity in this report, only the BM component is shown to 
have inadequate information flow safeguards, although the other DPAA components suffer the 
same deficits. In contrast, Section 6.2.6 provides a complete information flow and safeguard 
analysis for the DPAA as a whole (i.e., an alternative polyhedron encompassing all DPAA 
components). 

6.2.5.1 Information Flows 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 
surface color of the polyhedron represents the externally visible state. Using this framework: 

 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
88 

3. Any information flow not breaching the polyhedron nor modifying the externally visible 
state can be ignored. 

 
Buffer Manager: 

The BM provides 11 interrupt lines that are routed to the MPIC. Ten of these interrupt lines are 
provided to alert the software to the fact that one of the software portals needs attention. The last 
interrupt line provides generic error information for the BM. 

 
The BM does not directly communicate with the CoreNet coherency fabric. All BM CoreNet 

transactions are mediated by the QM. Software portal registers are memory mapped into one or 
more CoreNet LAWs, providing the interface for the processor cores to interface with the 10 
software portals. 

 
A major information flow that breaches the abstract polyhedron is the direct connect portals. 

The P4080 DPAA implementation provides four direct connect portals: one to each FM, one to 
the SE, and one to the PME. 

 
A major information flow breaching the abstract polyhedron is the software portals. The 

P4080 DPAA implementation provides 10 software portals: one for use by each processor core, 
one for use by the hypervisor, and one for use by an external processor accessing the QM. The 
processor cores, hypervisor, and external processor all invoke CoreNet transactions to interact 
with the software portals. The BM does not have direct access to the CoreNet coherency fabric. 
All CoreNet access to the BM is mediated through the QM. 

 
A potential covert information flow exists in the software portal query command. This 

command can be issued by any software portal and will return the status (i.e., are free buffers 
available in the pool) for all 64 buffer pools. 

 
A potential covert information flow exists in the buffer pools. While the software portals may 

provide atomic access to the buffers in the buffer pools, the BM does not perform any sanity 
checks on the buffers. This includes ensuring that a memory buffer has been properly sanitized 
before re-assigning it to software or direct connect portal. 

6.2.5.2  Safeguards 
Buffer Manager: 

The BM component provides the ability to enable, to disable, and to inhibit the generation of 
interrupts. The MPIC also provides methods for masking or routing interrupts to the specified 
processor core(s). 

 
The BM component was designed using the QM to mediate access to the CoreNet coherency 

fabric. The DPAA does not provide a method for the BM to communicate to its private, external 
memory region without involving the QM component. No safeguard exists to manage this 
information flow. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
89 

The DPAA was designed to provide low-latency, direct connect portals for hardware 
components. The DPAA does not provide alternative methods for on-chip hardware components 
to access BM. No safeguard exists to manage this information flow. 

 
The P4080 DPAA software portals were designed to be isolated to a single software unit. The 

memory sizes and alignments are setup so the processor MMUs and CoreNet LAWs can be 
programmed by the hypervisor to provide this proper isolation. 

 
The DPAA is designed to provide atomic access to buffer pools. It was not designed to 

support confidentiality. The 64 buffer pools are a shared resource to all the software and direct 
connect portals. Software portals can alter the number of free buffers in any of the pools by 
acquiring or releasing buffers. The portal query command returns the status of all 64 buffer pools 
in a single command. No safeguard exists to manage this information flow. 

6.2.6 Data Path Acceleration Architecture: Grouped Components 
In the previous section, it was shown that DPAA components, when analyzed separately, do not 
have sufficient information flow safeguards for high assurance systems. However, when the 
DPAA is analyzed as a whole (i.e., abstract polyhedron fully encloses the BM, the QM, both 
FMs, the PME, the SEC, and one or more processor cores) it can be shown the P4080 multicore 
architecture provides adequate information flow safeguards. 

6.2.6.1 Information Flows 
In this configuration, the processor core(s) manage the DPAA components and proxy the data to 
other parts of the system. The processor cores would provide MLS guard functionality for the 
DPAA components to the rest of the system. Information flows breaching this abstract 
polyhedron or changing the color of the abstract polyhedron are examined in additional detail 
below. 

 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 

surface color of the polyhedron represents the externally visible state. Using this framework: 
 

1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally visible 

state can be ignored. 
 
Processor Core(s): 

The processor cores were analyzed individually in Section 6.2.1. The same analysis applies to 
the processor cores in this configuration as well. 

 
 
CoreNet: 

Several of the DPAA components require private, external memory regions in system memory. 
These memory regions need to be properly protected by CoreNet LAWs and the hypervisor 
needs to configure processor cores and the PAMUs to ensure these private, external memory 
regions are not accessible to other components. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
90 

 
Interrupts: 

The DPAA implementation in the P4080 multicore architecture supports multiple interrupts in 
each component. These interrupts can be roughly classified as normal (e.g., data is available for 
the processor) or when errors occur in the components (e.g., ECC memory error). 

 
SerDes: 

FM interfaces with an external PHY or SerDes device to complete the interface to the physical 
layer. 

6.2.6.2 Safeguards 
Processor Core(s): 

The processor cores were analyzed individually in Section 6.2.1. The same analysis applies to 
the processor cores in this configuration as well. 

 
CoreNet: 

The hypervisor must configure the processor core MMUs and the CoreNet PAMUs to ensure that 
the private, external memory regions required for the DPAA are not accessible to other 
components. The hypervisor must configure the non-grouped processor core MMUs to ensure 
they do not have access to any of the DPAA components. The hypervisor must also configure the 
PAMUs guarding DPAA components to only communicate with specified memory regions and 
the grouped processor cores. 

 
Additionally, the P4080 multicore architecture supports logical partitions. Placing all the 

DPAA grouped components into a logical partition would allow the hardware to provide 
additional checks to ensure that the above configuration was implemented properly. 

 
Interrupts: 

All the DPAA interrupt lines are routed to the MPIC. The MPIC can be configured to either 
mask these interrupts or to route them to the grouped processor cores. 

 
SerDes: 

SerDes is a point-to-point serial bus. The SerDes lanes used for connecting FM to the physical 
layer interface are private. No additional safeguards needed. 

 
Disable Components: 

Table 44 provides the bit indexes in the DCFG_DEVDISR2 register used to disable the 
individual DPAA components. 

6.2.7 On-Chip Network: Individual Components 
Initial framework analysis treats each component in the On-Chip Network (OCN) (i.e., PCIe, 
RapidIO, sRIO, and DMA controllers) as individual system-high compartments. Each 
component is fully enclosed in its own abstract polyhedron. Information flows breaching the 
abstract polyhedron or externally visible events require mitigating safeguards. However, as the 
following analysis of the PCIe demonstrates, there are insufficient safeguards in place when the 
OCN components are treated (i.e., analyzed) as a set of individual components. For brevity in 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
91 

this report, only the PCIe component is shown to have inadequate information flow safeguards, 
although the other OCN components suffer the same deficits. In contrast, Section 6.2.7 provides 
a complete information flow and safeguard analysis for the OCN as a whole (i.e., an alternative 
polyhedron encompassing all OCN components). 
 

Table 44: DCFG_DEVDISR2 Component Disable Bits 

Component Bit(s) 
PME 0 
SEC 1 
QM and BM 4 
FM 1 6 
FM 1 - 10GE 7 
FM 1 - 4 x 1GE 8, 9, 10, and 11 
FM 2 14 
FM 2 - 10GE 15 
FM 2 - 4 x 1GE 16, 17, 18, and 19 

 

6.2.7.1 Information Flows 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 
surface color of the polyhedron represents the externally visible state. Using this framework: 

 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally visible 

state can be ignored. 
 
Peripheral Component Interconnect Express: 

Each PCIe controller provides two interrupt lines that are routed to the MPIC. One of the 
interrupts is dedicated and alerts software when the PCIe needs attention. The other interrupt is 
shared and provides generic error information for the PCIe controller. 

 
The PCIe controllers connect to a common crossbar switch. This crossbar switch provides 

mesh communications to the three PCIe controllers, DMA controllers, RapidIO Message Unit, 
sRIO controllers, and the CoreNet coherency fabric. The crossbar switch provides no access 
controls, permitting one PCIe controller talking to a different PCIe controller without PAMU 
access control checks. 

6.2.7.2 Safeguards 
Peripheral Component Interconnect Express: 

PCIe provides registers to enable, disable, and inhibit the generation of interrupts. The MPIC 
also provides methods for masking and routing interrupts to specific processor cores. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
92 

The common crossbar switch does not provide safeguards to restrict access between the OCN 
components. The PAMU only applies access controls for inbound data for the CoreNet 
coherency fabric. No safeguard exists to manage this information flow. 

6.2.8 On-Chip Network: Grouped Components 
In the previous section, it was shown that the OCN components, when analyzed separately, do 
not have sufficient information flow safeguards for high-assurance systems. However, when the 
OCN is analyzed as a whole (i.e., abstract polyhedron fully encloses the PCIe controllers, DMA 
controllers, RapidIO Message Unit, and sRIO controllers) it can be shown that the P4080 
multicore architecture provides adequate information flow safeguards. 

6.2.8.1 Information Flows 
To identify information flows, each processor core is enclosed in an abstract polyhedron. The 
surface color of the polyhedron represents the externally visible state. Using this framework: 

 
1. Any information flow breaching any surface of the polyhedron must be evaluated. 
2. Any information flow altering the externally visible state must be evaluated. 
3. Any information flow not breaching the polyhedron nor modifying the externally visible 

state can be ignored. 
 
There are three information flows that breach the polyhedron surface: interrupts, CoreNet 

transactions, and SerDes transactions. 

6.2.8.2 Safeguards 
The PAMU provides protection for the CoreNet transactions. There is a special notice for the 
configuration of DMA in multi-partition systems. 
 

The DMA controller uses a privileged copy of the CoreNet LAWs to resolve source and 
destination targets. The P4080 reference manual [Fre11c] specifies two methods for ensuring 
DMA works properly in multi-partition systems: 1) virtualize the Operating System (OS) to 
ensure that hypervisor calls are made to program the DMA controllers, or 2) ensure that all 
logical address are mapped one-to-one to physical addresses and that guest I/O logical addresses 
are mapped into the same globally unique system-wide range, which does not overlap with other 
non-I/O addresses. 

 
SerDes is a point-to-point serial bus. The SerDes lanes used for connecting PCIe and sRIO to 

external interfaces are private. No additional safeguards are needed. 
 
Disable Component: 

The three ePCI controllers can be disabled by setting bits 0, 1, and/or 2 in the 
DCFG_DEVDISR1 register. The RapidIO message unit can be disabled by setting bit 4 in the 
DCFG_DEVDISR1 register. The two sRIO controllers can be disabled by setting bits 5 and/or 6 
in the DCFG_DEVDISR1 register. The two DMA controllers can be disabled by setting bits 9, 
and/or 10 in the DCFG_DEVDISR1 register. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
93 

6.2.9 Real Time Debug 
This section provides the information flow analysis of the real-time debug unit described in 
Section 6.1.7 

6.2.9.1 Information Flows 
Without access to the Advanced QorIQ Debug and Performance Monitoring Guide, it was not 
possible to identify all of the information flows. For the purpose of this report, the worst case 
was assumed where both storage and timing covert channels exist via shared debug components. 
Since most of functional components provide debug hooks, the real time debug component 
provides information flows to all components. 

6.2.9.2 Safeguards 
Debug Control and Status Registers: 

The Debug Control and Status Registers (DCSR) allow software access to the hardware debug 
and performance monitoring capabilities built into the P4080 multicore architecture. There are 
two methods for accessing the DSCR registers: (1) using an external debug controller and (2) by 
creating a CoreNet LAW and mapping this address space into system memory space. 

 
An external debug controller requires physical access to the device. One solution to 

protecting the device against physical attacks would be to encapsulate the circuitry in a hard 
epoxy material suitable for tamper detection per Physical Security Level 3 defined by FIPS 140-
2 [Dep01]. 

 
The DCSR memory space would only be accessible to software if it was mapped in by a 

CoreNet LAW. The hypervisor should ensure this memory space is not accessible. 
 
Disable Component: 

Setting bit 15 in the CONFIG_DEVDISR1 register will disable the debug controller. Setting bit 
16 in the CONFIG_DEVDISR1 register will disable the Nexus/Aurora link layer. 

6.3 APPLYING THE SECURITY POLICY 
The final step in the framework is to apply the Security Policy to the information flows identified 
in the previous step. 

 
As described in the previous chapter, red networks are cleared to transmit classified and/or 

sensitive information in plaintext. Black networks are cleared to transmit encrypted classified 
and/or sensitive information. Figure 16 illustrates how two security gateways would be used to 
transmit classified and/or sensitive information between two red networks via a black network. 

 
In this scenario, a paper analysis of the Freescale P4080 multicore architecture is used. One 

primary advantage of the Freescale P4080 multicore architecture is the high-speed DPAA 
architecture. Red networks would be connected using the 1GE network interfaces. The 10GE 
network interfaces would then be used to transmit data over the black networks. The DPAA 
architecture could be configured to send red network data to a specific, isolated processor core 
that would encrypt the data using the correct encryption key. This data would then be rerouted 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
94 

back through the DPAA to traverse the black network. Incoming black-network data would use 
the parsing capabilities of the FM to identify the target red network. This data would then be 
routed to the appropriate isolated processor core to decrypt the network data and then transmit 
the data to the correct red network. 

 
The security policy used for this report: 
 
1. Red network data is only permitted to be transmitted to a red network with the same 

classification. Separate cryptographic keys shall be used to ensure the separation of data 
at different classification levels. 

2. All encrypted data must pass through the guard before transmission on the black network. 

6.4 CONCLUSIONS 
Based on the analysis provided in this chapter, we cannot recommend the Freescale P4080 
multicore architecture as a generic MILS multicore architecture for the following reasons: 

 
1. The coupling of the Data Path Acceleration Architecture (DPAA) components required 

the abstract polyhedron to fully enclose all the DPAA components plus at least one 
processor core. This component coupling dramatically reduces the effectiveness of the 
Freescale P4080 multicore architecture for MILS applications in high-assurance 
communication systems. 

2. The coupling of Enhanced Local Bus Controller (eLBC) peripherals required the abstract 
polyhedron to fully enclose the eLBC and the attached peripherals. 

3. The coupling of the On-Chip Network (OCN) required the abstract polyhedron to fully 
enclose all the OCN and the attached peripherals. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
95 

 EVALUATING INTEL NEHALEM ARCHITECTURE USING THE 7
FRAMEWORK 

 
The Intel x86 processor family was started with the release of the 8086 processor in 1978. Since 
that processor release, Intel has evolved the processor architecture through many technical 
evolutions, while still maintaining backwards compatibility. Object code created for the 
8086/8088, 16-bit, processors will still run on the latest processor in the Intel 64 and IA-32 
architecture families [Int12]. 

 
The x86 processor family provides four native privilege levels: ring 0, ring 1, ring 2, and ring 

3. Ring 0 is the most privileged and is typically where the operating system kernel runs. Ring 3 is 
the least privileged and is typically where applications are run. For backward compatibility 
reasons, these processors do not implement a separate privilege level for the hypervisor. Instead, 
Intel added the Virtual Machine Extensions (VMX) for virtualization support. The VMX 
extensions provide two software modes: hypervisor (i.e., VMX root) and guest system (i.e., 
VMX non-root). After guest configuration, the hypervisor transitions to the guest system mode 
by performing a VM-entry. While executing in guest system mode, the processor core runs with 
all four native privilege levels, but will VM-exit to the hypervisor when specific conditions are 
hit. The hypervisor mode, added by the VMX extensions, creates a new pseudo-privilege level 
(commonly called ring -1). 

 
In addition to the above privilege levels, the processor also provides an extremely privileged 

System Management Mode (SMM) (commonly called ring -2). SMM handles system-wide 
functions like power management, system hardware control, or proprietary Original Equipment 
Manufacturer (OEM)-designed code. SMM is intended for use by system firmware, not by 
hypervisors, operating systems, or application software. When a System Management Interrupt 
(SMI) is received, the processor saves the context of the current task, disables the interrupts, and 
changes to the SMRAM address space before executing the SMM code. The SMRAM address 
space is similar to the real-address mode since there are no privilege levels or address mappings. 
This allows SMM to execute all system instructions, access all I/O addresses, and access all 
system memory. The RSM instruction is only executable in SMM and is used to return control 
back to the interrupted task [Int12]. 

 
This analysis assumes that a trusted hypervisor has initialized the processor cores, configured 

each processor core in protected mode, and initialized the VMX extensions. VMX root 
operations (i.e., hypervisor) are managed by this trusted hypervisor. This analysis focuses on 
information flows between guest operating systems running on different physical processor 
cores. Figure 26 illustrates the different privilege levels present in each processor core. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
96 

 
 
Due to the longevity and popularity of the x86 processor family, this processor family has 

received attention from security researchers. For brevity in this report, a non-exhaustive review 
of a few vulnerabilities targeting interrupts, VMX instructions, TXT-based trusted boot, and 
SMM mode are discussed. In this chapter, the Intel Nehalem multicore architecture is analyzed 
to see if the information flow and safeguard analysis presented in the framework could identify 
additional vulnerabilities. 

7.1 IDENTIFY HARDWARE COMPONENTS 
The first step in the framework is to identify the hardware components. 

 
For brevity in this report, the framework was only applied to a small portion of the 

architecture. Specifically, the analysis focused on information flows and safeguards for the 
system initialization process and interprocessor interrupts. 

7.1.1 Processor Cores 
Guest OS Initialization: 

On power-up or RESET, the hardware dynamically selects one processor core on the system bus 
and designates it as the BootStrap Processor (BSP). The other processor cores are designated as 
Application Processors (AP). The BSP initializes the system by executing the BIOS bootstrap 
code to configure the Advanced Programmable Interrupt Controllers (APIC), initialize system-
wide data structures, and then completes the initialization of the other APs. Once this 
initialization is complete, the BSP begins the initialization of the trusted hypervisor code [Int12]. 

 
One of the first tasks for the trusted hypervisor is to load the microcode updates into each of 

the processing cores8. Next, the trusted hypervisor completes the initialization and setup of the 
processing environment. Once this initialization is completed, the trusted hypervisor issues the 

                                                 
8 Many Intel processors provide the capability to correct processor errata by loading an Intel-supplied data block 

(i.e., the microcode update) into the processor. 

 
Figure 26: Processor Privilege Levels 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
97 

VMXON instruction on each processor core. Now the trusted hypervisor configures the guest 
environment on each processor core using the VMX instructions. The VMLAUNCH instruction 
is executed on each processor core, telling it to begin running the guest operating system [Int12].. 

 
Interprocessor Interrupts: 

The InterProcessor Interrupts (IPI) mechanism is used to maintain synchronization between the 
processor cores. The IPI mechanism is used to interrupt individual or groups of processor cores 
connected to the system bus. Each processor core contains a local Advanced Programmable 
Interrupt Controller (APIC) for managing interrupts. The APIC registers are memory mapped 
into a 4-Kbyte region of the processor core's physical memory space. One of the registers in this 
memory region is the Interrupt Command Register (ICR). The ICR is presented as two 32-bit 
registers (ICR_LOW and ICR_HIGH) to form a 64-bit register. Figure 27 shows the ICR register 
format. The ICR is both readable and writeable by the guest operating system [Int12]. 
 

 

7.2 IDENTIFY AND EVALUATE INFORMATION FLOWS 
The second step of the framework is to identify information flows and safeguards. 

7.2.1 Processor Cores 
To identify information flows between the guest operating systems, only the guest operating 
system in each processor core is completely enclosed in the abstract polyhedron. The non-
enclosed portion of each processor core is the control of the trusted hypervisor and not analyzed 
as part of this analysis. Three types of information flows exist in the system: 
 

 
Figure 27: ICR Register 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
98 

1. Information flows generated by the trusted hypervisor that may or may not breach any 
abstract polyhedrons. 

2. Information flows generated from an abstract polyhedron that does not affect the state or 
breach any other abstract polyhedron. 

3. Information flows generated from an abstract polyhedron which do effect the state of or 
breach at least one other abstract polyhedron. 

 
Only type 3 information flows meet the definition of a covert communication channel. 

Information flows not meeting the requirements for type 3 can be ignored as part of the analysis. 

7.2.1.1 Information Flows 
Interprocessor Interrupts: 

Guest operating systems can generate interprocessor interrupts by writing to the ICR in the local 
APIC. The ICR permits the guest operating system to specify the destination (including interrupt 
broadcast options), the interrupt vector, and the delivery mode. Specifically, the ICR permits the 
guest operating system to generate a Non-Maskable Interrupt (NMI). 

 
A potential covert information flow exists when using interprocessor interrupts. A guest 

operating system, enclosed in the polyhedron, can generate interrupts for other processor cores 
by writing to the ICR. The VMX instructions provide methods for directing an interrupt to either 
the trusted hypervisor or to the guest operating system. A direct communication channel exists 
when the trusted hypervisor configures the interrupt to be delivered to the guest operating system 
on the target processor cores. An indirect communication channel also exists when the trusted 
hypervisor handles the interrupt on the target processor cores. This indirect communication 
channel exists given the fact that the interrupt will cause a VM-exit to relinquish control to the 
hypervisor to handle the interrupt. This VM-exit takes a measurable amount of time, thus 
providing an indirect timing communication channel. 

 
The Startup InterProcessor Interrupt Attack: 

As part of the multicore boot process, two interrupts are used. The INIT interrupt resets the 
processor and puts the processor in the wait-for-SIPI state. When the Startup InterProcessor 
Interrupt (SIPI) is sent, it directs the processor to start code execution at a physical memory 
address. [Int12, WRd]. The only documented method for generating the SIPI is via the ICR. 
However, in 2011, researchers discovered a method for generating SIPI interrupts from PCIe 
devices [Int12]. 

 
This attack is possible since these processor cores also support the Message Signaled 

Interrupts (MSI). MSI were introduced as part of the PCI Local Bus Specification, Rev 2.2. 
Figure 28 describes the layout of the MSI Message Data Register (MDR). 

 
The researchers in [WRd] recognized the similarity between the ICR (Figure 27) and the MSI 

MDR (Figure 28) formats. Specifically, they recognized that the SIPI was initiated in the ICR by 
using the Start Up (i.e., 110b) value. In the MSI MDR, this value was reserved. The researchers 
crafted a MSI message. Figure 29 illustrates the attack. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
99 

 
The difficulty of this attack is that the shell code must be placed in physical memory below 

1-MByte and must start on a page boundary (0x1000) [WRd]. 
 
System Management Mode: 

SMM is the most privileged mode on the system. This mode is not intended to be used for 
software applications; it offers no privilege levels and circumvents all protections put into place 
by the VMX instructions, page table permissions, ring levels, Etc. 

 

 
Figure 29: SIPI Attack 

 
Figure 28: MDR Register Format 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
100 

7.2.1.2  Safeguards 
The VMX extensions implement a Virtual-Machine Control Data Structure (VMCS) to manage 
transitions from the trusted hypervisor to the guest operating systems. The VMCS data is 
organized into six logical groups: (1) Guest-state area, (2) Host-state area, (3) VM-execution 
control fields, (4) VM-exit control fields, (5) VM-entry control fields, and (6) VM-exit 
information fields. The VM-execution control fields control the processor behavior when 
operating in the guest operating system. These fields partially control what actions will cause a 
VM-exit back to the trusted hypervisor. 

 
The VM-execution control fields are composed of two 32-bit values. The first 32-bit value 

contains the primary processor-based VM-execution controls and the second 32-bit value 
contains the secondary processor-based VM-execution controls. Table 45 identifies the bits in 
the VM-execution control fields that must be set in order to force the guest operating system to 
VM-exit when accessing the physical pages for the local ASIC. 

Table 45: VM-execution Controls for local ASIC Access Protection 

 Bit Description 
Primary 31 Activate secondary control 
Secondary 0 Virtualize APIC accesses 

 
Even with the VM-execution controls set according to Table 45, the Intel reference manuals 

still describe scenarios where access to the APIC physical addresses will not cause a VM-exit. 
Intel documents [Int12] cite the following cases where a VM-exit may not occur when accessing 
the physical pages for the local ASIC: 

 
1. Large page translations - Intel defines linear access as (1) an access that results from a 

memory access using a linear address, and (2) when the access's physical address is the 
translation of that linear address. When using a linear translation, if the translation is 
using a 4-Kbyte page, the VM-exit will always occur. When using large page (2-MByte, 
4-MByte, or 1-GByte) translations, the APIC-access VM-exit may or may not occur. 

2. Improper Extended Page Table (EPT) invalidation - When EPT is enabled and the cache 
information is not properly invalidated from the EPT paging structures, the APIC-access 
VM-exit may be missed. 

3. Improper TLB and Paging-Structure Caches - When Virtual Processor ID (VPID) is 
enabled and the TLB information is not properly invalidated using the INVVPID 
instruction, the APIC-access VM-exit may be missed. 

4. Guest-Physical Accesses - When EPT is enabled and if the EPT PDPTE maps to a 2-
MByte page or a 1-GByte page (bit 7 of the EPT PDPTE is 1) guest-physical access may 
not cause an APIC-access VM exit. 

 
The Startup InterProcessor Interrupt Attack: 

The VMX extensions provide a partial mitigation for the SIPI Attack. After the processor issues 
the VMXON instruction, when the system is running in VMX root mode (i.e., trusted 
hypervisor), the INIT and SIPI interrupts will be queued until the VMXOFF instruction is issued. 
The INIT and SIPI interrupts will be masked when the system is running in VMX non-root 
mode. This is only a partial mitigation due to the fact that the above race condition still exists. In 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
101 

addition, the VMXOFF instruction is typically executed as part of the power down sequence, 
allowing this attack to execute. Wojtczuk and Rutkowska in [WRd] demonstrated this attack by 
placing shell code for playing a song. After the attack was executed and system shutdown 
initiated, the shell code song was played as the system shutdown. 

 
Another mitigation strategy is to implement the Intel TXT-based trusted boot process using 

the SMX extensions. When the trusted hypervisor is started via the SENTER SMX instruction, 
the delivery of the INIT interrupt causes the platform to immediately shutdown if outside of 
VMX mode. In VMX mode, the delivery of the INIT interrupt will cause the platform to 
shutdown immediately once the VMXOFF instruction is executed. This mitigation strategy 
should provide proper protection when the TXT-based trusted boot process is not circumvented. 

 
The same researchers who discovered the SIPI Attack, also demonstrated other attacks 

[WRa, WRT, WRb] to bypass the Intel TXT-based trusted boot process and compromise the 
SMM code on the platform. One attack [WRb] required Intel to: 1) Update the SINIT modules in 
the TXT-based trusted boot process to fix the buffer overflow for the affected processors, 2) 
Release updated processor microcode to prevent the loading and execution of the buggy SINIT 
modules, and 3) Add a preventative measure to permit blacklisting of buggy SINIT modules in 
the future. 

 
These researchers believe the proper fix for TXT-based trusted boot process is the SMM 

Transfer Monitor (STM) to sandbox potentially malicious SMM code. Intel discusses this 
solution [Int12] as the Dual-Monitor Treatment of SMIs and SMM, but none of the major BIOS 
vendors or OEMs (including Intel) has implemented this solution [WRb]. 

 
System Management Mode: 

In addition to the attacks used to bypass the TXT-based above, independent (but concurrent) 
research [DEG, WRc] identified additional attacks using the Memory Type Range Registers 
(MTRR). These registers are used to assign memory types (i.e., Uncacheable, Write Combining, 
Write-through, Write-protected, or Writeback). These attacks took advantage of the MTRR 
settings and changed the SMRAM range to writeback. The attacker then generates write access 
to the physical locations corresponding to the locations of the SMRAM (effectively poisoning 
the cache). Finally, the attacker triggers an SMI (which can be triggered simply by executing 
OUT to port 0xb2). When the processor enters SMM, the values from the cache may be used, 
allowing user code to be run with SMM privileges. 

7.3 APPLYING THE SECURITY POLICY 
The final step in the framework is to apply the Security Policy to the information flows identified 
in the previous step. 

 
As described in Chapter 5, red networks are cleared to transmit classified and/or sensitive 

information in plaintext. Black networks are cleared to transmit encrypted classified and/or 
sensitive information. Figure 16 illustrates how two security gateways would be used to transmit 
classified and/or sensitive information between two red networks via a black network. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
102 

For this security policy, the Intel Nehalem Architecture would be configured to use TXT-
trusted boot and the VMX extensions to run the guest operating systems. Each guest operating 
system would be responsible for a specific task (e.g., the encryption or the decryption of network 
traffic, providing guard services, Etc.). 

 
The security policy used for this report: 
 
1. Red network data is only permitted to be transmitted to a red network with the same 

classification. Separate cryptographic keys shall be used to ensure the separation of data 
at different classification levels. 

2. All encrypted data must pass through the guard before transmission on the black network. 

7.4 CONCLUSION 
Based on the partial analysis of the boot sequence and interprocessor interrupts provided above, 
we cannot recommend the Intel Nehalem multicore architecture as a generic MILS multicore 
architecture for the following reasons: 

 
• Thirty-five years of backwards compatibly adds a significant complexity and risk to the 

multicore architecture for high-assurance systems. 
• The hypervisor privilege level (ring -1) is not native to the processor core, but bolted on 

using the VMX processor extensions. 
• The required safeguard complexity makes hypervisor development expensive and error 

prone. 
• The VMX processor extensions do not address potential timing channels. 
• The SMM (ring -2) provides a higher privilege level than the trusted hypervisor. 
• The processor cores permit a level of reconfiguration via Intel proprietary microcode 

updates9. 
• TXT-trusted boot does not provide protection from malicious code running in the SMM. 

The STM is designed to provide proper sandboxing for the SMM during the TXT-trusted 
boot, but no major OEMs or BIOS vendors (including Intel) have implemented it. 

• The SMM is subject to cache poisoning if the MTRR registers are improperly configured. 
 

                                                 
9 This means the same processor core may behave differently depending upon the version of the microcode that 

is loaded at boot time. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
103 

 CONCLUSIONS AND FUTURE WORK 8
8.1 CONCLUSIONS 

None of the multicore architectures analyzed in this research lend themselves to generic high-
assurance MILS systems. 

 
The CBEA in the Sony PlayStation 3 was analyzed in Chapter 5. This multicore architecture 

combined the PowerPC Processor Element (PPE) with eight Synergistic Processor Elements 
(SPE)s. The SPE processor cores had its own local memory store independent from the main 
storage domain. Initially, this memory isolation appeared to solve many of the memory and 
cache concerns present in multicore architectures using a shared main storage domain. 
Unfortunately, the CBEA is very reliant on the PPE to manage and control each of the SPE 
processor cores. This dependency requires that the PPE (the most complex component) be 
trusted and run a full Multi-Level Secure (MLS) environment to maintain separation between the 
SPE processor cores. This requirement eliminated the CBEA as a generic multicore architecture 
for high-assurance MILS systems. 

 
A paper analysis on the Freescale P4080 multicore architecture was performed in Chapter 6. 

This multicore architecture initially showed good promise as the processor cores and CoreNet 
Coherency Fabric was analyzed. This architecture supports Asymmetric Multi-Processing 
(AMP) and provides protections via logical partitions to help ensure isolation between the 
abstract polyhedrons. This multicore architecture is also power sensitive, so the architecture 
supports the disabling of most components on the chip. This ability to disable unused 
components is powerful when mapping the security policy to the information flows and 
safeguards. Unfortunately, the area the Freescale P4080 multicore architecture suffered was in 
Data Path Acceleration Architecture (DPAA) and the peripheral bus controllers. Due to coupling 
between the components and peripherals, the abstract polyhedrons needed to expand to include 
multiple components. The grouping of the components reduced the usefulness of the Freescale 
P4080 multicore architecture as a generic high-assurance MILS system. 

 
A brief paper analysis and a literature search for known vulnerabilities on the Intel Nehalem 

architecture was performed in Chapter 7. Thirty-five years of innovation and backwards 
compatibility has introduced a significant amount of complexity into this multicore architecture. 
For example, the multicore architecture does not support a native hypervisor privilege level, 
instead a set of processor extensions are used to introduce a new pseudo-privilege level (ring -1). 
This added complexity also shows in the amount of effort that is required to implement a 
safeguard to prevent the guest operating system from writing to the local Advanced 
Programmable Interrupt Controller (APIC). Additionally, this multicore architecture also 
implements a System Management Mode that runs at a higher privilege level than the 
hypervisor. Finally, the literature search identified several vulnerabilities which were able to run 
shell code on the processor when the VMX extensions were turned off, attack the SMM code, 
and then bypass the TXT-trusted boot loader. The complexity of this multicore architecture 
eliminated it from consideration as a generic high-assurance MILS system. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
104 

8.2 FUTURE WORK 
The framework presented in this report provided the groundwork for simplifying and 
streamlining the analysis of multicore architectures for use in high-assurance MILS systems. 
Below are several possible improvements for extending the framework: 

 
• Complete System - The analysis presented in this report groups the peripherals on an 

external bus as a cloud all running at the same clearance level. This simplified and made 
the analysis apply to general purpose use cases. Potential improvements to this 
framework would be a focus on these interfaces and external peripherals to see if the 
single clearance level requirement could be relaxed. 

• Shared Components - This framework focused on major hardware components. The 
granularity may be improved in some of the more complex components (e.g., processor 
cores). For example, Simultaneous Multi-Threading (SMT) allows virtual processors to 
share the components of a single physical processor core. At a minimum, the polyhedron 
abstract concept presented in this framework would need to be modified to address the 
sharing of physical resources by the virtual processors. 

• Additional Security Policies - This report focused on the identification of information 
flows and safeguards at the hardware and trusted hypervisor level. Not much time was 
spent attempting to map these information flows and safeguards to a wide variety of 
security policies. It was also interesting since we could not recommend any of the 
multicore architectures for the security policy we chose. With a different security policy, 
the Freescale P4080 multicore architecture may provide a suitable solution. 

8.3 CONTRIBUTIONS 
The initial evaluation of the CBEA multicore architecture for use in a MILS-compliant 
architecture sparked the idea for this research topic. The initial analysis used a relatively ad-hoc 
method, but an informed approach to multicore information flow analysis was used that was 
based on methods used for single-core information flow analysis. Before this framework, the 
analysis of the hardware and security policies was combined into a single analysis. Each analysis 
was focused through the lenses of a particular security policy. This required a complete 
reanalysis every time the same multicore architecture was evaluated for a different security 
policy. This effort was inefficient and so I started researching methods for separating the analysis 
of the multicore architectures from the security policies. 

 
The first step of the framework is to identify all the hardware components to be evaluated. 

This step is very simple, but important. Without this step, it was not always clear if all the 
components had been evaluated. This list also provided a communication and status method that 
could be shared among multiple evaluators. Once the component was identified, the component 
was enclosed in an abstract polyhedron. The abstract polyhedron is also a major contribution to 
the evaluation of multicore architectures. 

 
The second step is to identify the information flows and safeguards. The second step starts to 

illustrate the power of the abstract polyhedron. The abstract polyhedron simplifies and focuses 
the evaluation effort by only modeling the actions that breach the abstract polyhedron or alter the 
external visible state of the component (i.e., polyhedron color). The information flows represent 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
105 

the information flow capabilities of the hardware. Safeguards represent the hardware capabilities 
to reduce or restrict the hardware information flow capabilities. The completed model from this 
step is a contribution since it represents the important information flows (i.e., those information 
flows which can be used as overt or covert communication channels) and hides the non-
important information flows (i.e., those information flows which are internal and not externally 
visible). Safeguards are added to this model to identify important information flows that can be 
reduced or restricted. 

 
The final contribution presented in this project is the evaluation of the CBEA, Freescale 

P4080, and the Intel Nehalem multicore architecture for use in generic high-assurance MILS 
system.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
106 

 

 
 
 
 
 
 

PART III 
 

SECURITY EVALUATION OF 
VIRTUALIZATION 

TECHNOLOGIES IN MULTICORE 
SYSTEMS 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
107 

 INTRODUCTION 9
 

This part of the report presents security evaluation of virtualization technologies in multicore 
systems. Multicore processors are becoming ubiquitous in the enterprises because they can be 
utilized to get higher performance by splitting system tasks into subtasks and distributing them 
across the multicore chipset. As one key component of multicore architectural features, 
virtualization technology has spurred a number of exciting development with virtual machines, 
especially in the area of hardware-assisted extensions. Intel and AMD have both released 
hardware virtualization support in their respective current mainstream processors, such as Intel 
Core i7 and AMD Phenom. However, while providing services in a virtual machine gains 
benefits, this has also led to explosive growth of security concerns in virtual machine systems. 

 
To evaluate security of virtualization technologies in multicore architectures, this project first 

examined hardware features for virtualization technology in multicore processors, such as 
hardware-assisted Intel Virtualization Technology (Intel VT-x) and AMD Virtualization 
Technology (AMD-V) as well as hardware features in Cell Broadband Engine (CBEA) 
processors. Furthermore, by taking advantage of hardware virtualization support, we developed a 
lightweight hardware-assisted virtual machine monitor prototype, called IAVMM (for 
information assurance virtual machine monitor), which is purpose-built for the Intel 64 
architecture and security analysis of multicore systems. Although hardware manufacturers are 
deploying multicore technologies, the science behind understanding the security of these systems 
is still lacking. In order to improve our understanding of security in multicore systems, we 
present and examine a layered framework for secure multicore architectures, and then introduce 
a layered assurance scheme for such architectures and illustrate how to formalize the framework 
based on 3 layers (from hardware layer, through hypervisor layer, up to user layer). 

 
The work presented in this part of the report leads to a better understanding of virtualization 

technologies and corresponding security concerns in multicore architectures, which will benefit 
architects and researchers by providing security evaluation of hardware features and a 
lightweight virtual machine monitor. Moreover, a layered assurance scheme is provided to assist 
in the evaluation of security for multicore architecture design. 

9.1 MOTIVATION 
Multicore processors are becoming ubiquitous in the enterprise since they can be utilized to get 
higher performance by splitting system tasks into subtasks and distributing them across the 
multicore chipset. Therefore, vendors, such as Intel, AMD and IBM, are currently shipping 
processors with 4 or 8 cores, and are working on developing chipsets with more cores. As a 
crucial technology in multicore architectures, virtualization technology, which virtualizes the 
underlying physical resources that can be shared among multiple guest OSs, attracts more and 
more attention. For example, the National Security Agency (NSA) used to use separate physical 
machines to access networks with data at different levels of classification, which is of course 
expensive and unwieldy. The virtualization technology prompted NSA's move to their NetTop 
architecture in the late 90's, which uses virtual machines for isolation on the same physical host 
[MS00]. The work presented in this report focuses on such technology, especially hardware-



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
108 

assisted virtualization technology. With this work we are able to get a better understanding of 
virtualization technology and potential security concerns in multicore systems. 

 
Virtualization has profoundly changed the information technology (IT) industry in a wide 

variety of areas such as operating systems, network, applications and storage. With virtualization 
technology, companies can gain scalability, since they can upgrade their virtual machines 
without necessarily upgrading the physical machines; companies can gain security, since they 
have a more controlled management environment and easier environment for backup and restore; 
companies can gain high availability, since they can share huge computational resources by 
cloud computing technology; companies gain convenience, since they can try or test some 
solutions without the necessity of using real environments. Along with the development of 
virtualization technology over the past decade, there has been steady activity and progress 
associated with multicore architectures, especially after the integration of hardware-assisted 
virtualization technology. The widespread use of hardware-assisted virtualization technology has 
spurred new research related with virtual machines (VMs). The addition of hardware-assisted 
virtualization technology to the x86 remedies problems found with virtualization of traditional 
x86 architectures [RI00], and supports a much simpler hypervisor implementation. Intel and 
AMD have both incorporated explicit hardware support for virtualization in their CPU chips 
since 2005 in order to provide efficient virtualization. Although people are already using 
virtualization hardware, there is still a need for an understanding of the science of these 
technologies. Therefore, we examine these current hardware-assisted virtualization technologies 
and corresponding hardware features in multicore architectures. 

 
In addition, the virtualization technology development has also led to explosive growth in 

research efforts into the reliability of virtual machine systems (VMS). The concept behind 
virtualization technology is to virtualize underlying physical resources that can be shared among 
multiple guest OSs. The isolation properties of this technology have become attractive from a 
security perspective, as has the ability to inspect the details of a VM's execution or the ability to 
tweak the isolation boundaries [BLRS08]. For example, in a forensic team research, it is possible 
to clone a potentially compromised host into a VM and make further investigation without the 
need of the physical machine. The investigation team can also take advantage of snapshots to 
return to a previous state. There are other benefits of using virtualization, such as isolation for 
IDS or honeypots. However, while providing services in a virtual machine offers a 
comparatively harder target for attackers and thus gains benefits, it also introduces some new 
tricky security challenges (e.g. VM-escape10, VM-Based Rootkits) [CN01, FO06, Rut08]. 
According to the National Vulnerability Database [NVD], there were 25 security vulnerabilities 
identified in VMware ESX [VMwa] in the last 3 years. Likewise, virtual machine technology is 
rapidly gaining acceptance as a fundamental building block in enterprise data centers. Since 
availability, integrity, and reliability are all critical challenges for these data centers, they are 
now using virtualization in an attempt to maximize the usage of their hardware resources by 
running on a single physical server instead of multiple servers. Therefore, it becomes 
increasingly important to investigate those critical components and verify secure system 
execution with virtualization technology, especially the popular hardware-assisted virtualization 
technologies in Intel and AMD architectures. 

                                                 
10 VM-escape is the ability to bypass the virtual machine monitor and get access to the underlying system. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
109 

 
When developing secure computing systems, especially for high assurance and multilevel 

secure environments, it is important to understand the security capabilities of the underlying 
hardware as well as the relative merits of different VMM features, functionalities and 
configurations. In order to address this efficiently, we were interested in a small VMM kernel 
that can be used as a platform for experimentation relevant to security features of multicore 
processors with hardware virtualization support. 

 
The design of a secure system requires architects to develop a system architecture that 

supports implementation of various security policies. Enforcing security policies at the 
architecture level is attractive because it allows security concerns to be recognized early and can 
be given sufficient attention in the design stages. A security policy, determined by regulation and 
doctrine, defines “secure” for a system.  

9.2 RESEARCH CHALLENGES 
Hardware-assisted virtualization technology has been presented to industry as an efficient 
solution to improve virtualization. There are still many features to be examined from a security 
perspective when utilizing such hardware extensions in Intel or AMD architecture. The very first 
question we face is: can hardware-assisted virtualization technology provide more security than 
software-assisted virtualization technology? To answer this, we need to evaluate hardware-
assisted virtualization technology, and determine the resources that are virtualized in these 
hardware extensions, and make a comparison of security protection features provided by 
software and hardware virtualization. 

 
The next issue that arises is how to evaluate whether these hardware extensions can provide a 

more secure virtual machine system. To address this issue, a Virtual Machine Monitor (VMM) is 
designed and implemented for security analysis of the underlying hardware architectural 
features. We are interested in a small VMM that allows us to build experimentation based on that 
platform. Compared with commodity hypervisors, which are always of a huge size, i.e., Xen 3.4 
consisting of 200 KLOC (thousand lines of source code) and VMware consisting of 230 KLOC, 
this VMM should be lightweight and convenient for extensible development. Furthermore, to 
avoid the possible effects of existing host operating systems, this VMM should run directly on 
the top of “bare metal”, which means that no system API support will be provided to develop the 
VMM. Last but not least, assuming that the hypervisor is supposed to be secure and 
impenetrable, we still need to evaluate the security exploits possibly existing in the virtual 
machine systems. Specifically, this challenge can be split into the following problems: 

 
1. Whether a program running on a guest VM can interfere with other guest VMs or VMMs 

unless an explicit communication has been established? 
2. Whether there exists a covert channel that makes keeping secure data on one VM safe 

from other VMs very difficult? 
3. Whether there exist Denial of Service (DoS) attacks on multicore systems, such as IBM 

CBEA processors and Intel Core i7 series processors? 
 

All of these questions have two avenues of explanation. First, can the guest VM utilize 
hardware resources of the architecture to affect another VM? Second, can the guest VM cause a 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
110 

VM escape? In this project, we are primarily interested in the first avenue. Although the second 
is very important, the answer depends primarily upon the implementation of the VMM. We will 
explore the hardware features that can be used by the VMM to protect it. 

 
In addition, the design of a secure system requires architects to develop a system architecture 

that supports implementation of various security policies. Enforcing security policies at the 
architecture level is attractive because it allows security concerns to be recognized early and can 
be given sufficient attention in the design stages. Therefore, our research efforts are also taken to 
enforce security policy for multicore architectures. The term “security policy for multicore 
architectures” covers security requirements that protect multicore systems from any unauthorized 
behaviors. To develop a secure multicore system, it is necessary to enforce a security policy 
framework as simple and as strong as possible to provide general guidance for secure systems on 
multicore architectures. Due to a wide variety of malicious behaviors, assurance would most 
likely have to specify exactly what each element of software is intended to perform, and to 
provide evidence that it does it correctly. Similarly, we analyze a multicore architecture by 
examining each component from hardware level, through hypervisor level up to user level. 
Briefly, mapping a higher-level (user level) security policy into the supporting security policies 
in lower level (e.g. infrastructure hardware) is a complex process which is not well verified and 
supported by current security engineering techniques, and this research provides a practical 
example of how to perform this verification. 

9.3 CONTRIBUTIONS 
The goal of this part of our project is to offer a compelling approach to enhancing secure virtual 
machine systems with virtualization technology by evaluating hardware-assisted virtualization 
technology in current multicore systems, building an experimental VMM platform residing on 
the multicore architecture and formalizing a security policy framework for multicore 
architectures. To be specific, the contributions of this project are as follows: 

 
• Examine and contrast current hardware-assisted virtualization technologies in multicore 

architectures, including Intel Virtualization Technology (Intel VT-x) and AMD 
Virtualization (AMD-V). Moreover, we evaluate the hardware features for virtualization 
technology in multicore processors, especially Intel Core i7-860. In addition, we also 
evaluate security concerns of the CBEA processor. There are only a few books and 
documents dedicated to these subjects. 

• Design and develop our lightweight virtual machine monitor, IAVMM, for security 
analysis of the underlying Intel 64 architectural features. The IAVMM is a Type I VMM 
and runs directly on the processor (i.e., bare metal). It's a very lightweight VMM, only 
consisting of seven thousand lines of code. IAVMM doesn't provide the full functionality 
of commodity hypervisors, but enough for research experimentation, and it is extensible 
if more features need to be implemented in this prototype. Based on this platform, some 
potential vulnerabilities are pointed out, involving registers, instructions, and shared 
memory issues. 

• Propose an approach for specifying and verifying a layered assurance scheme for 
multicore architectures. Multicore architectures are analyzed by examining a layered 
security policy framework, from hardware level, through hypervisor level up to user 
level. After identifying and examining multicore hardware architectural features and 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
111 

enforcing necessary security policies in VMM level, we decompose the policies into 
components that can be mapped into hardware level, then verify that VMM- and 
Hardware- level security policy satisfies user-level security requirements. 

 
In summary, the work presented in this report leads to two practical security engineering 

techniques, including a lightweight virtual machine monitor for security analysis of Intel 64 
architectural features and a layered security policy framework, which will benefit system 
architects by providing design guidance and reducing overall design efforts in developing secure 
multicore systems. 

9.4 PART III OVERVIEW 
Chapter 10  provides a brief review of the relevant background, including multicore processors 
and corresponding hardware-assisted virtualization technology, and then describes previous and 
related work about hypervisors with security concerns and security architecture modeling. 

 
Chapter 11 describes and compares the hardware-assisted virtualization technology, 

including Intel VT-x and AMD-V. In addition, CBEA processors are also examined from a 
security perspective. 

 
The development and implementation of our lightweight VMM, IAVMM, are described in 

Chapter 12. IAVMM is provided for security analysis of the underlying Intel 64 architectural 
features. It's convenient for us to build research experiments based on this prototype. The 
validation of this IAVMM and some security concerns of multicore architectures are presented in 
Chapter 13. 

 
Chapter 14 models a hierarchy of a layered security policy framework in terms of multiple 

secure architectures that are related by formal mappings, and provides an exemplary 3-layer 
version of the model, from hardware level, through hypervisor level up to user level. 

 
Chapter 15 introduces a formal model of virtual machine systems and highlights out a 

security requirement for multicore architectures, followed by some examples of this formal 
model. 

 
Finally, Chapter 16 summarizes the work of Part II of this report and introduces a number of 

directions for future work in the areas of security challenges in multicore architectures. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
112 

 BACKGROUND 10
 

This chapter presents background research in the area of virtualization technology, especially in 
multicore systems. We start with a summary of terminology, followed by an overview of current 
multicore processor architectures, then a discussion of virtualization technology for different 
components of a virtual machine monitor. The related work about security challenges in 
multicore systems is also presented. 

10.1 MULTICORE ARCHITECTURE TERMINOLOGY 
The following are the basic terms and concepts used in virtualization and multicore architectures 
that are relevant to this project. 

 
• Multicore Processor: A multicore processor is a physical package that contains more 

than one processor core. 
• Physical Package: The physical package is a microprocessor. Each physical package is 

plugged into a physical socket on a main board, and may contain one or more processor 
cores. 

• Processor Core: A processor core is the circuitry that provides the ability to decode and 
execute instructions. A processor core may contain one or more logical processors. 

• Logical Processor: A logical processor is the basic unit of processor hardware that 
allows the software executive in the operating system to dispatch a task or execute a 
thread context. Each logical processor can execute only one thread context at a time. 

• Hyper-Threading: Hyper-threading is a feature where each processor core provides the 
functionality of more than one logical processor. 

• Advanced Programmable Interrupt Controller (APIC): An APIC is either an I/O 
APIC or a local APIC. It is attached to the APIC bus, which is a special non-architectural 
bus on which the APICs in the system send messages. The I/O APIC is a specially 
designed for receiving and distributing interrupts from external devices. The Local APIC 
is built into the processor and is responsible for dispatching interrupts sent over the APIC 
bus to its processor core, and sending interrupts to other processors over the APIC bus. 

• Virtual Address: A virtual address is the memory address used by a process when 
specifying the address of an operand or an instruction. This address is translated by the 
system into a physical address. Sometimes it is referred to as a logical address. We call 
this address the guest virtual address within a guest VM. 

• Physical Address: A physical address is used by hardware to address memory cells 
included in memory chips in order to enable the data bus to access a particular storage 
cell of main memory. 

• Logical-Partitioned System: In a logical-partitioned system, partition-management 
software (a hypervisor) creates the partitions by assigning portions of the total system 
resources to each partition, each capable of running its own operating system and user 
environment such that a program executing in one partition cannot interfere with any 
program executing in a different partition. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
113 

• Virtual Machine Monitor (VMM): A VMM, also known as a hypervisor, is software 
that arbitrates access to the underlying physical resources which can be shared among 
multiple guest operating systems. A VMM acts as a host and has full control of the 
processor(s) and other platform hardware. 

• Virtual Machine (VM): A VM is a software implementation of an isolated machine that 
executes programs like a real machine. 

• Guest Software: Each Virtual Machine (VM) is a guest software environment that 
supports a system consisting of operating system and application software. 

10.2 OVERVIEW OF MULTICORE PROCESSORS ARCHITECTURES 
This section provides a review of the Intel Nehalem, AMD Phenom and IBM CBEA 
architectures. Both Nehalem and Phenom architectures support hardware-assisted virtualization 
technology, while CBEA supports logical partitioning technology. 

 
As Intel's latest flagship processor, the Nehalem processor, such as Intel Core i7-860, is a 64-

bit processor fully integrated with four cores, and an inclusive and shared L3 cache as shown in 
Figure 30(a). From a performance perspective, the inclusive L3 cache is the ideal configuration 
since it keeps most cache coherency transactions on-die. However, it comes with potential 
security challenges as well, since the L3 cache is shared by all four processor cores. The 
Nehalem architecture provides Hyper-Threading technology for parallel, multi-threaded 
execution by reducing computational latency and making optimal use of every cycle. To achieve 
performance advantages with the integrated quad-core, Nehalem also replaces the front-side bus 
with an integrated memory controller and on-die dedicated interprocessor QuickPath 
Interconnect (QPI), which is “a packet-based, high bandwidth, and low latency point-to-point 
interconnect” [Kan08]. AMD built a processor (AMD Phenom X4 quad-core processor) after the 
release of Nehalem and claimed at that time that it was the industry's first true quad-core x86 
processor since the cores can communicate on-die rather than on package for better performance. 
In Figure 30(b) we sketch the Phenom quad-core processor: each core has its own L1- and L2- 
caches, while all cores share a common on-chip L3-cache. Similar to Intel core i7, this design in 
multicore CPUs allows all cores to process data at a rate close to clock rate and to reduce 
memory latency. Meanwhile, Phenom integrates the memory controller on-die and uses multiple 
memory banks to improve memory throughput. If the caches and the memory are concurrently 
accessed by all cores, contention for their utilization may increase the latency of memory 
operations and degrade performance. Phenom replaces the front-side bus, which is currently 
different for every type of machine, with an open specification, HyperTransport controller. As 
with QPI, HyperTransport is a packet-oriented, power-managed, multi-link high speed 
interconnect. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
114 

 
The CBEA processor is an implementation conforming to the Cell Broadband Engine 

Architecture (CBEA), which extends the 64-bit PowerPC architecture. Both the CBEA and the 
CBEA processor are the results of a collaboration among SONY, Toshiba and IBM, known as 
STI, formally begun in early 2001 [IBM07b]. In a CBEA processor (Figure 30(c)) we have a 
core processor, called PowerPC Processor Element (PPE) which controls tasks and eight 
Synergistic Processor Elements (SPEs) for data-intensive processing. The SPE consists of the 
synergistic processor unit (SPU) and the memory flow control (MFC) responsible for the data 
movements and synchronization, as well for the interface with the high-performance Element 
Interconnect Bus (EIB). The PPE has a L1 instruction cache and a L1 data cache as well as a 
unified L2 instruction and data cache, whereas the SPU only has its unified 256 KB Local Store 
(LS). The hypervisor in the CBEA processor is typically implemented in a small executive that is 
packaged as firmware. It creates the partitions by assigning portions of the total system resources 
(the PPE, the SPEs, the I/O controller, and the EIB) to each partition as in a logical-partitioned 
system. Of course it harvests those resources when that partition is deleted. 

              
(a) Intel Nehalem architecture on         (b) AMD Phenom X4 architecture 

a single die          on a single die 
 

 
(c) CellBE architecture 

Figure 30: Overview of multicore processor architectures 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
115 

10.3 VIRTUAL MACHINE MONITOR 
A VMM, also known as a hypervisor, is software for a computer system that arbitrates access to 
the underlying physical resources which can be shared among multiple guest operating systems 
(OSs). These guest OSs are referred to as virtual machines (VMs). Classic microprocessors 
implement levels or rings of execution, with at least a supervisor and user mode. Applications 
run in user mode, while the operating system runs in supervisor mode. To provide virtualization 
and execution of concurrent operating systems in separate VMs, there is a need to support these 
execution levels in each VM and still protect the VMM. This can be done through the use of 
software and/or hardware. Popek and Goldberg's 1974 paper [PG74] describes the characteristics 
for classical virtualization through three essential requirements: 

 
• Equivalence or Fidelity. A program running on a virtual machine must exhibit identical 

behavior as if it was running on an unvirtualized machine; 
• Efficiency or Performance. The majority of operations must be performed on real 

hardware resources without the intervention of the virtualization layer; 
• Resource Control or Safety. The virtualization layer must completely control real system 

resources. No program running on a virtual machine can access any resource not 
explicitly allocated to it by the hypervisor. 

 
The definition of a VMM does not specify how the VMM gains control of the machine to 

interpret instructions that cannot be directly executed on the processor. As a result, there are two 
different types of VMMs that can create a virtual machine environment. Type 1, also called 
native or bare-metal, runs directly on top of the system's hardware on real ring 0 to control the 
resource and to monitor guest OSs. A guest operating system thus runs on another level above 
the VMM, allowing for true isolation of each virtual machine. For instance, VMware ESX 
Server [VMwa] and Xen [Xena] are Type 1 hypervisors. Our tiny IAVMM is also a Type 1 
VMM. Type 2, also called hosted, runs within a conventional operating system environment, 
usually in ring 3; that is, the VMM operates as an application on top of an existing operating 
system and provides only virtualization support services. This type of VMM has a lower 
performance than the other type because factors such as calls to the hardware must traverse many 
layers before the operations are returned to the guest operating system. Both VMware 
workstation [VMwb] and Oracle VM VirtualBox [Vir] are Type 2 VMMs. 

 
The term classically virtualizable is used to describe an architecture that can be virtualized 

purely with the trap-and-emulate approach, a prevalent VMM implementation method proposed 
by Popek and Goldberg [PG74]. In this approach, when a guest OS is attempting to execute an 
instruction for which it needs the supervisor privilege level, the CPU is able to “trap” such 
attempts, and allows the VMM to “emulate” the effect that is desired by that guest OS. However, 
applying this virtualization technology on traditional x86 architecture becomes complicated due 
to an inherent lack of support, i.e. address-space compression11, ring aliasing12, ring 

                                                 
11 OSs expect to have access to the processor's full virtual address space, some portion of which is reserved by 

the VMM. The VMM must prevent guest access to those portions to protect its integrity. 
12 Ring aliasing refers to problems that arise when software is run at a privilege level other than the privilege 

level for which it was written. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
116 

compression13 and so on [AA00, NSL+06, RI00]. Fortunately, recent architectural 
modifications with hardware extensions for virtualization (Intel VT-x and AMD-V) make the 
x86 architecture classically virtualizable. The following subsections discuss the evolution of 
virtualization for CPU, memory and I/O components. 

10.3.1 CPU Virtualization 
In this section we discuss CPU virtualization. We specifically focus on two primary features: 
privilege levels and CPU instructions. 

 
In the x86 family, the processor's protection mechanism recognizes 4 privilege levels14, with 

value 0 denoting highest privilege level and value 3 for the lowest one. Levels 1 and 2 are not 
typically used in most of operating systems. The purpose of this division is to allow a 
microprocessor to determine whether a privileged instruction can execute without fault or 
exception, thereby increasing system stability and reliability. Although there are four available 
levels, guest VMs traditionally only run at level 3 with restricted access, whereas the VMM 
operates within level 0 which enables total access to platform resources, like CPU and memory. 
However, a guest OS in a VM acts as if it was a real OS and will attempt to execute some 
privileged instructions, and will try to limit processes to higher privilege levels. This results in 
ring compression, where a guest OS and its applications must both run at level 3, unprotected by 
hardware from user applications. Therefore, this division of privilege levels conflicts with the 
virtual machine systems. Intel VT-x addresses this issue by providing two forms of CPU 
operation, VMX root operation and VMX non-root operation, both of which support all four 
privilege levels, allowing a guest OS to run at its intended privilege level (privilege level 0). 

 
Another challenge for CPU virtualization relates to CPU instructions. Besides those legacy 

instructions15, Popek and Goldberg [PG74] introduce a classification of the instructions of an 
instruction set architecture (ISA) into two different categories: 

 
• Privileged instructions that trap only if the processor is in user mode and have no trap if it 

is in supervisor mode, such as Intel instructions VMCALL16, CPUID17  and the 
instructions for accessing I/O device ; 

• Sensitive instructions that try to change the configuration of actual resources in the 
hardware platform, such as Intel instructions SIDT18,SLDT19. 

 

                                                 
13 The meaning of “ring compression” used here will be discussed in detail in the next section. 
14 Sometimes these privilege levels are designated as privilege rings. 
15 Legacy instructions, as executed by the virtual machine, obey the equivalence property [PG74]. 
16 The VMCALL instruction allows guest software to make a call for service into an underlying VM monitor. 
17 The CPUID instruction returns processor identification and feature information to the EAX, EBX, ECX, and 

EDX registers, as determined by input entered in EAX. 
18 The SIDT instruction stores the content of the interrupt descriptor table register (IDTR) in the destination 

operand. 
19 The SLDT instruction stores the content of the local descriptor table register (LDTR) in the 
destination operand. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
117 

According to Popek and Goldberg, when a VM attempts to execute a sensitive instruction, it 
is guaranteed to trap automatically and signal the VMM. In the x86 architecture, there are 17 
sensitive but unprivileged instructions identified by Robin and Irvine [RI00], which don't meet 
this requirement. In other words, the control is not passed back to the VMM when these sensitive 
instructions are invoked, and thus the VMM cannot emulate the expected behavior. For example, 
the POPF instruction, one of sensitive and unprivileged instructions, pops a word from the top of 
the stack and stores the value in the lower 16 bits of the EFLAGS register, hence allowing values 
in the EFLAGS20 register to be changed. Therefore, it is unsurprising that the traditional x86 
architecture fails to be classically virtualized. 

 
In order to overcome these aforementioned limitations, some new techniques [VMw07] have 

been proposed to implement CPU virtualization on x86 architectures instead of the trap-and-
emulate mechanism. These techniques include binary translation, paravirtualization and 
hardware-assisted virtualization. 

 
Binary translation is the emulation of one instruction set by another through translation of 

code. Hence, an additional binary translator is needed to handle the entire x86 instruction set for 
this mechanism. Moreover, the translator must provide the ability to intercept precisely the 
virtualization sensitive instructions without requiring trap semantics. For instance, we can 
execute bytecode on a Java Virtual Machine. This binary translation mechanism only works 
when recompiling source code is not desirable or feasible. 

 
Paravirtualization, as a different approach to overcome the virtualization issues, refers to a 

mechanism to efficiently improve the communication between guest OS and the VMM. The 
approach requires replacing non-virtualizable instructions on the guest OS with hypercalls that 
communicate directly with the virtualization layer, and providing hypercall interfaces for other 
critical kernel operations such as memory management. In other words, the running guest OS 
must be modified in order to operate in the virtual environment. Therefore, its compatibility and 
portability are poor. Take the Xen system with versions before 3.0 as an instance, the guest OSs 
needed to be modified to run on the Xen VMM successfully. 

 
Hardware-assisted virtualization (i.e. Intel VT-x and AMD-v), is designed to provide new 

CPU execution mode features that allow the VMM to run in a new supervisor (host) mode. 
Moreover, privileged and sensitive calls can be set to automatically trap to the VMM with the 
support of hardware extensions, which means that we can eliminate the need of either binary 
translation or paravirtualization on the x86 architecture. We will discuss more details of this 
technology in Chapter 11. 

10.3.2 Memory Virtualization 
The memory management facilities of the IA-32 architecture are divided into two parts: 
segmentation and paging. The CPU control unit transforms a virtual address (logical address) 
into a linear address by means of a hardware circuit called a segmentation unit, and a second 
hardware circuit called a paging unit transforms the linear address into a physical address. 

                                                 
20 The EFLAGS register contains the system flags and fields that control I/O, maskable hardware interrupts, 

debugging, task switching and the virtual-8086 mode. Only privileged code should be allowed to modify these bits. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
118 

Segmentation provides a mechanism for dividing the processor's addressable memory space 
(called the linear address space) into smaller protected address spaces called segments. A logical 
address, consisting of a segment selector and an offset, is provided to locate a byte in a particular 
segment. The offset part of the logical address plus the base address for the segment thus forms a 
linear address. If paging is not used, the linear address space is mapped directly into the physical 
address space. Otherwise, page tables are needed for the translation. 

 
VMMs must control physical memory to ensure VM isolation and to remap guest physical 

addresses into host physical address space for virtualization. Memory virtualization allows the 
VMM to enforce control of physical memory and yet support guest OSs' expectation to manage 
memory address translation. In a VM-based system, we have at least two separate primary OSs 
(host OS and guest OSs) with each supporting their own translations. Therefore, virtualization 
for memory systems brings more challenges if we wish to allow both levels of OSs to control 
isolation within their domains of influence. In VM systems, host physical addresses are the only 
addresses that are used to access real memory cells. In a traditional microprocessor the Memory 
Management Unit (MMU) hardware support allows for quick translation of virtual/linear 
addresses to physical addresses by use of Translation Lookaside Buffers (TLB), which cache 
recently used page translations. When a TLB miss occurs, the hardware (or software in some 
systems) walks the page tables to obtain the new translation and updates the TLB. In a VM 
system, the guest OSs maintain a set of guest page tables that translate virtual addresses to guest 
physical addresses, and then the guest physical addresses will have to be brought out of the VM 
and be translated to host physical addresses. Before the advent of hardware support for MMU 
virtualization on chipsets for VM systems, this last step was implemented by the VMM through 
the use of shadow page tables (see Figure 31) during every TLB miss. However, under this 
shadow paging mechanism the VMM needs to intercept guest page table updates to keep the 
shadow page tables coherent with guest page tables, which wreaks havoc on the performance of 
this solution to memory virtualization. The reason is that the guest virtual address is commonly 
possessed by both shadow page tables and guest page tables. When the guest attempts to 
schedule a new process on the processor, it updates the processor's CR321  to establish the guest 
page tables corresponding to the new process. The VMM must intercept this operation and set 
the real CR3 value based on the corresponding shadow page tables for the new process. 
Therefore, frequent context switches within the guest could result in significant hypervisor 
overheads. 

 
Rather than have the VMM manage the shadow page table's mapping in software, Intel's 

Extended Page Tables (EPT) and AMD's Nested Page Tables (NPT) solve this problem by 
adding a separate set of hardware-walked page tables which translate from guest physical 
addresses to host physical addresses that are used to access memory. To reduce frequent TLB 
flush22, a CPU with hardware support caches the translation information in the TLB associated 
with a VM specific tag, such as Intel's Virtual Processor Identifier (VPID) tag or AMD's Address 
Space Identifier (ASID) tag. In Intel VT-x, VPIDs introduce to VMX operation a facility by 

                                                 
21 In Intel processors, Control Register 3, CR3, contains the base memory address of the current top-level page 

table which stores the translation from linear to physical address. 
22 Normally, the entries in the x86 TLBs are not associated with any address space. Hence, every time there is a 

change in address space, such as a context switch, the entire TLB has to be flushed. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
119 

which a logical processor may cache information for multiple linear-address spaces. In this way, 
VMX transitions may retain cached information and the logical processor switches to a different 
linear-address space. More details will be provided in Chapter 11. 

 

 

10.3.3 I/O Virtualization 
Before looking at how I/O devices are virtualized, it's important to know how conventional 
Peripheral Component Interconnect (PCI) [PCIa] and PCI Express (PCIe) [PCIb] work. Each 
PCI device is identified by a triple {bus, device, function}. A computer might have several PCI 
buses that could be linked or independent, but only one PCI device can use the bus at any given 
moment. It can't allow multiple devices to be active simultaneously on that PCI bus. Fortunately, 
PCIe, a new computer expansion card standard designed to replace the older PCI standard, is a 
point-to-point architecture rather than a shared parallel bus architecture. In PCIe, there are no 
direct connections between devices and each device is connected to a controller. Thus, this 
topology alleviates PCI's shared bus problem. 

 
The VMM virtualizes the physical hardware and allows each virtual machine a set of 

customizable virtual devices. Most of this virtualized I/O requires software drivers that run on 
the host operating system to access the real hardware. If the VMM is a Type II hypervisor, it will 
use the device drivers already existing in the host OS, otherwise Type I hypervisors may need to 
provide their own device drivers for the hardware on the machine, as in the case of VMware 
ESX. Three approaches are provided to implement such a mechanism. The first approach to 
virtualizing I/O devices is emulation in software, similar to binary translation in CPU 
virtualization. With this approach, every time an I/O operation occurs, the VMM has to trap and 
emulate it, in turn causing additional data transfers and interrupts. As a consequence, if the 

 
 

(a) Address Translation of Guest Page Tables in Guest OS 
 
 

 
 

(b) Previous Address Translation Mechanisms in Virtual Machine System 
 

Figure 31: Page Translation Mechanisms 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
120 

device performs hundreds of megabytes of data transfer, the overhead is substantial and it 
degrades performance. The second is the paravirtualization approach for I/O devices, which is 
similar to paravirtualization for CPU as well. The hypervisor exposes relatively high-level APIs 
to guest OSs, and the guest OSs (or device drivers) need to be modified in order to apply these 
APIs for the corresponding operations. 

 
In order to gain native performance, I/O virtualization allows virtual machines to talk directly 

to hardware. Two issues come along with this approach. The first one is if a device has already 
been assigned to one guest, it can't be reassigned to any others. To solve this problem, Xen 
applies a mechanism that requires a requesting guest OS to use virtualized drivers to send I/O 
requests to the I/O-assigned guest OS, and then the I/O-assigned guest OS communicates with 
the hardware instead of the requesting guest OS. The second big issue involves shared memory. 
The memory that I/O devices use for DMA transfer is all based on physical memory addresses, 
which don't correlate to the bounded virtual addresses visible to each guest. As a result, 
whenever the guest's driver directs the I/O device to perform DMA, it will fail because of the 
wrong memory addresses. To solve both of these problems, Intel and AMD introduced hardware 
extensions I/O virtualization technology Intel VT-d [Int08] and AMD-Vi [AMD09], respectively 
as a third approach to I/O virtualization. Since an I/O device can normally be assigned to exactly 
one guest virtual machine, PCIe has been extended in hardware extensions to solve this 
multiplexing problem so that I/O devices can offer multiple virtualized functions to different 
VMs [Bri]. Each triple {bus, device, virtual_function} can be assigned to a different VM, 
thereby allowing the I/O device to be shared. However, this requires device support and will only 
exist with newer devices. To fix the second issue, an IO memory management unit (IOMMU) is 
added in hardware extensions. The IOMMU not only provides the translation between guest 
physical addresses and host physical addresses automatically, but also provides some memory 
protection like restricting the physical address range a device can access to. More details will be 
provided in Chapter 11. 

10.3.4 Interrupt Virtualization 
The IA-32 architecture uses 8-bit vectors, of which 244 (20H-FFH) are available for external 
interrupts. Vectors are used to select the appropriate entry in the Interrupt Descriptor Table 
(IDT). Providing support for external interrupts, especially regarding interrupt masking, presents 
some specific challenge to VMM design. The IA-32 architecture uses the interrupt flag (IF) in 
the EFLAGS register to control interrupt masking. A VMM will likely manage external 
interrupts and deny a guest OS the ability to control interrupt masking by ensuring that guest 
attempts to control interrupt masking will fault in the context of ring de-privileging23. Such 
faulting could cause problems because some OSs may frequently mask and unmask interrupts, 
thereby affecting system performance significantly. 

 
Even if it were possible to prevent guest modifications of interrupt masking without 

intercepting each attempt, challenges would remain when a VMM has a “virtual interrupt” to 
deliver to a guest. In Intel VT-x, a virtual interrupt is delivered only when the guest has 
unmasked interrupts. To deliver virtual interrupts in a timely way, a VMM should intercept 

                                                 
23 Ring deprivileging is a technique that runs all guest software at a privilege level greater than 0. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
121 

some, but not all, attempts by a guest to modify interrupt masking. Doing so could significantly 
complicate the design of a VMM. 

In summary, we have discussed the virtualization of important complex components of an 
entire system, such as virtualization of CPU, memory and I/O devices. As mentioned above, 
hardware-assisted virtualization of these components improves virtualization efficiency. 

10.4 RELATED WORK 
Virtualization technology for commodity processors has entered the hardware extensions era. 
Machines with hardware-assisted virtualization technology have become a prevalent platform for 
building virtual machine systems. In the meanwhile, a variety of research issues regarding 
security concerns are raised along with the development of this technology. In this section, we 
present some current prevalent VMMs and describe how they work, and then introduce the 
security challenges posed in multicore systems. 

10.4.1 Previous Hypervisors 
Xen, initially a paravirtualization open-source VMM, runs on bare-metal for the 32-bit x86 
processor architecture and allows the user to run several guest OSs on a single host concurrently. 
Due to the addition of hardware virtualization extensions from Intel VT-x and AMD-v since Xen 
3.0, Xen architecture can be split into three important and distinct domains: Dom0 (Domain 
Zero), DomU (Domain User) and HVM (Hardware-assisted virtual machine) domain. Dom0 is 
the first domain started by the Xen hypervisor on boot. It is a privileged service domain which is 
used to create and configure all of the remaining guest domains (DomU and HVM Domain). 
DomU, started by the xend command in Dom0, is an unprivileged domain with (by default) no 
access to the hardware. Xen-HVM has hardware-assisted device emulation to provide I/O 
virtualization to the virtual machines. In other words, contrary to common paravirtualization 
VMMs, current Xen allows unmodified guest operating systems in the HVM domain as well as 
paravirtualized guest OSs in Dom0 and DomU [BDF+03, DLM+06]. In addition, it also supports 
64-bit platforms and 64-bit guests. Xen presents to each HVM guest a virtualized platform by the 
use of virtual modules, such as a virtual CPU module providing the abstraction of a processor, a 
virtual memory management unit (MMU) module presenting the abstraction of the hardware 
MMU, and a virtual I/O device in Dom0 providing the abstraction of a PC platform. Although 
Xen consists of a large amount of source code (approximately 230,000 lines of source code in 
Xen 3.4.1), it is useful as a building block towards secure VMMs. For example, Ether 
[DRSL08], a transparent malware analyzer residing completely outside of the target OS 
environment, makes use of Xen HVM and its support for Intel VT-x for malware analysis. 
Microsoft Hyper-V [Hyp] is also based on a Xen-like but not identical architecture. 

 
VMware Workstation is a type II hypervisor, residing on top of a host OS and able to create 

virtual machines for a variety of guest OSs, such as Solaris x86, FreeBSD, Windows and Linux. 
In 2001, VMware Elastic Sky X (ESX) [VMwa, VMw07] was announced as the first server 
product with an approach different to that of the workstation version. VMware ESX doesn't 
require a host OS, but instead it has its own native hypervisor on a bare-metal system. Because 
the source code is not released to the public, we don't discuss it further in this report. 

 
Microsoft Hyper-V is a type I VMM, which runs on top of bare metal. It's a part of Windows 

Server 2008 and it is a native 64-bit hypervisor that can run 32-bit and 64-bit VMs concurrently. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
122 

The main goal is to enable the possibility to run multiple guest OSs, called partitions, on a single 
server hardware system. There are two types of partitions: 1) parent partition: the controlling 
partition for the management of other child partitions, and managing and assigning the hardware 
devices with exception of processor scheduling and physical memory allocation since they are 
handled by the hypervisor; 2) child partition: this is where the guest OS will run, and is created 
by the parent partition. Partitions communicate with the hypervisor layer by using hypercalls, 
which can be considered APIs used by partitioned OS. As with VMware, Hyper-V is not an 
open-source hypervisor, so we don't discuss it further in this report. 

 
At present, we are aware of another two systems which use AMD-v technology. Tiny Virtual 

Machine Monitor (TVMM) [Kan06] is a useful proof-of-concept lightweight VMM for 
understanding AMD SVM extensions. However, TVMM essentially only supports AMD64 
architecture with virtualization technology and it only can boot its own sample operating system. 
Booting a real OS or a general purpose program requires many changes and proved to be a 
daunting task. Malware Analysis Virtual Machine Monitor (MAVMM) [NSJ+09], an enhanced 
version of TVMM, is proposed as a yet-another lightweight hardware-supported virtualization 
platform that is purpose-built for malware analysis in AMD64 architecture. It can handle 
different paging modes, CPU operating modes and several types of guest images. Similar to 
TVMM, there are some deficiencies existing in MAVMM. First, it is a host VMM only in 
support of one single guest VM running at any given moment. Second, no input service is 
provided, which means that it is not easy for the system to receive commands or messages from 
external devices. Both of these VMMs can only support the AMD64 architecture, and currently 
only boot on the AMD SimNow simulator. 

10.4.2 Security Challenges in Multicore Systems 
As we have seen in the previous section, hardware virtualization technology is going 
mainstream. Security, as a very important component, has also become an import and timely 
research field. Our research efforts are dedicated to the security challenges posed in multicore 
systems and the corresponding defense systems proposed to mitigate these potential 
compromises. 

 
A VMM segments physical resources into isolated entities and allows each guest OS to run 

independently, without affecting any other VM or the host OS. Unfortunately, current VMMs do 
not offer such perfect isolation. Hence, this isolation will be compromised if a VM-escape 
happens. Generally speaking, in VM-escape the program running in a guest VM is able to bypass 
the VMM layer and get access to the host OS24, thus gaining root privileges and having full 
control over the computer. For example, the vulnerability for CVE-2007-4496 in VMware 
Workstation [VMWc], found by Rafal Wojtczuk in 2007, allows authenticated users with 
administrative privileges on a guest OS to corrupt memory and potentially execute arbitrary code 
on the host OS via unspecified vectors. The vulnerability for CVE-2007-4993 in Xen 3.0.3 
[Xenb] found by Joris Van Rantwijk in 2007, allows the root user in a guest domain to trigger 
execution of arbitrary Python code in Dom0 by crafting a grub.conf file. 

 

                                                 
24 In this case, we talk about the VM escape in Type II hypervisor systems. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
123 

Inspired by VM systems, a VM-based rootkit (VMBR), as a new type of malware software, 
is capable of installing a VMM underneath an existing operating system and hoisting the original 
target operating system, on-the-fly, into a VM that is then monitored and controlled. Corrupting 
an operating system in this way is particularly interesting from the attackers' point of view 
because it signifies corrupting all the software that run upon this host OS. VMBRs are more 
difficult to detect than traditional malware software since they gain full control of the system and 
thus their states cannot be directly accessed by security detection software (i.e., Intrusion 
Detection Systems (IDS)) residing in the target system. SubVirt [KCW+06] is such a VMBR. 
Luckily, defenders have been exploring techniques to detect the presence of a VMBR. A VMBR 
does leave signs of its presence that a determined IDS can observe, because a VMBR always 
tends to require a reboot in order to be installed before it can run, thereby having more of an 
impact on the system. Nevertheless, a new variant VMBR Blue Pill [RT07] was proposed by The 
Invisible Things Lab to overcome this limitation. Blue Pill installs its thin hypervisor quietly 
without any intervention of the machine, especially no need to reboot the machine, and it moves 
the target OS into the VM by exploiting AMD-v extensions. However, by default it does not 
survive system reboot. 

 
Although there are some security challenges, VM systems can provide compelling 

approaches to offering strong protection by the property of isolation. Garfinkel and Rosenblum 
[GR03] leveraged VMM technology and isolated an IDS from the monitored host by pulling the 
IDS outside of the host into a completely different hardware protection domain for greater attack 
resistance. They also offered VM introspection to inspect a VM from the outside for the purpose 
of analyzing the software running inside it. In addition, there are more and more hypervisors 
applied for secure system or security analysis. SecVisor [SLQP07] uses a small hypervisor to 
defend against kernel code injection, preventing an attacker from either modifying existing code 
in a kernel or from executing injected code with kernel privilege over the lifetime of the system. 
BitVisor [SET+09] is a parapass-through hypervisor that intercepts only a small set of I/O device 
access to implement OS-transparent data encryption and intrusion detection, while other access 
is mostly pass-through. HyperSafe [WJ10] endows existing hypervisors with a unique self-
protection capability to provide lifetime control flow integrity. A lightweight hypervisor Hytux 
[ELND09] implements protection mechanisms in a more privileged mode than the Linux kernel 
and then protects the kernel from malicious actions. 

10.4.3 Security Architecture Model 
There has been some work on security architecture modeling and providing security architecture 
design guidance for architects [MQRG97, ZAF08, BDRS08]. However, none of them is specific 
for multicore systems, especially multicore architectures with hardware-assisted virtualization 
technology. The principle of separation kernel, introduced by [Rus81] in the early 1980s, is to 
divide all resources into blocks such that the activities in one block are isolated from activities in 
another block, unless an explicit communication has been established, and security policies are 
enforced by trusted applications running in some of those blocks. The conceptual model of 
separation kernel provides an ideal foundation to create secure VMMs, since the primary 
common functionality of both of them is to prevent illegal information flow between isolated 
blocks. Levin et al. [LIN06] extend and provide separation kernel protection profile to enforce a 
compound security policy with requirements at the gross partition level as well as at the 
granularity of individual subjects and resources, hence enhancing protection for secure systems. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
124 

Multiple Independent Levels of Security/Safety (MILS) [AFOTH06] is a high-assurance 
architecture for secure information sharing by separating out the security mechanisms and 
concerns into manageable components, such as separation kernels, partitioned file systems, and 
partitioning communications systems that deliver the required guarantee of separation. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
125 

 EVALUATION OF HARDWARE FEATURES FOR SECURITY IN 11
MULTICORE SYSTEMS 

 
The evaluation of multicore hardware features is especially important when we begin to consider 
the use of these computer systems in high-security areas, with critical or secret data. A key 
feature of multicore architectures is virtualization technology. This chapter provides an overview 
of hardware extension support for virtualization to provide a context for later discussion of 
objectives. Intel and AMD have introduced hardware virtualization extensions in their current 
processors: virtual machine extensions (VMX) and secure virtual machine (SVM) extensions, 
respectively. Hardware-assisted virtualization technology provides several features to simplify 
VMM implementations for faster performance. When evaluating security about such a whole 
system, it is desirable to guarantee not just that the integrated system is secure, but also that 
separate concrete components are secure. Therefore, we will evaluate each component of 
hardware-assisted virtualization technology in current VM systems, including CPU 
virtualization, memory virtualization and I/O virtualization, based on the Intel Core i7 multicore 
architecture. In addition, because the CBEA processor is being considered for use in secure 
communication and data processing environment, we also need to explore its hardware 
architectural features prior to its utilization in these facilities. The details of each evaluation are 
presented in the following subsections. 

11.1 CPU 
For CPU virtualization, Intel VT-x introduces two modes of CPU operation: VMX root operation 
(a.k.a., host operating mode) that is provided for the VMM operation, and VMX non-root 
operation (a.k.a., guest operating mode) that is targeted for guest software execution. Both modes 
support execution in all four privilege levels, allowing OSs in VMs to manage processes as if 
they were on a stand-alone processor. By introducing both operating modes with full access to all 
privilege levels, the problem of ring compression disappears. This is because that a guest OS can 
operate in guest privilege level 0 while the VMM can still be fully protected from any errant 
behavior [FO06]. In addition, VT-x defines an in-memory data structure, referred to as virtual 
machine control structure or VMCS, to specify processor behavior as well as transitions between 
these two operating modes: the transition from VMX root operation to VMX non-root operation, 
VM entry; and the transition from VMX non-root operation to VMX root operation, VM exit. 
Processor behavior in VMX root operation is very much as it is outside VMX operation. The 
principle differences are that a set of new instructions (the VMX instructions) is available and 
that the values that can be loaded into certain control registers are limited. The guest OS 
instructions executed in VMX non-root operation are similar to the corresponding instructions in 
a non-virtualized system except for the fact that certain sensitive instructions and events cause 
VM exits to the VMM. The VM-execution control fields in the VMCS set the specific conditions 
for triggering a VM exit. To facilitate checking which events or exceptions caused a VM exit, the 
system records corresponding exit reason in a VM exit data structure once a VM exit occurs. 
Since these VM exits replace ordinary behaviors, the functionality of software in VMX non-root 
operation is limited. However, it is this limitation that allows the VMM to retain control of 
processor resources. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
126 

 
Figure 32 illustrates the VMX transitions that are involved during the execution of 

virtualized software. One or more guest VMs might be created on a single physical processor. 
Each guest VM is represented by a VMCS, which should be constructed before being launched. 
Before initializing a VMCS, system software needs to create a VMXON region in memory to 
support VMX operations for each logical processor. A VMM can host several VMs and have 
many VMCSs active under its management. A unique VMCS region is required for each VM 
while a unique VMXON region is required for the VMM itself. The address of the VMXON 
region is provided as an operand to the VMXON instruction. After executing the VMXON 
instruction, the VMM enters VMX root operating mode. Only in this operating mode can system 
launch guest VMs and then enter VMX non-root operating mode using the VMLAUNCH 
instruction. On VM entry, the host processor state is stored first and then the guest processor 
state is loaded from the constructed VMCS. In VMX non-root operating mode, the VMM regains 
control by affecting a VM exit. The VMM might finally decide to shut itself down and leave 
VMX root operation by executing the VMXOFF instruction. 

 

 
A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical 

processor in VMX non-root operation. A current VMCS for controlling a logical processor in 
VMX non-root operation may be referred to as a working VMCS if the logical processor is not in 
VMX non-root operation. The VMM can load a VMCS and make it the current VMCS by using 
VMPTRLD instruction. At any given time, only one VMCS is current for each logical processor. 
Figure 33 depicts a scenario swapping the execution between VM A and VM B in a logical 
processor. VMCS B is marked current after VMPTRLD B, and then the system can launch VM 
B while VMCS A is in an active state. After VM exit, the state of VMCS B is changed from 
controlling to current until VMPTRLD A is executed to make the VMCS B active. When VMCS 
A is current, VM A can be launched by using VMLAUNCH instruction. 

 
The VMCS contains a guest state area, host state area and various VMX control fields that 

configure the environment of VM execution, VM exit and VM entry. However, in the AMD 
SVM extension, the VMCS-like data structure  virtual machine control block or VMCB, only 
consists of guest state information, various control fields that configure the execution 

 
Figure 32: Interaction between Virtual Machine Monitors and guests 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
127 

environment of the guest virtual machine and those fields that indicate special actions to be taken 
before running guest kernel code. This means that the host processor state information is not a 
component of the VMCB structure in AMD SVM and instead is memory-mapped to a region of 
memory with an initial starting address specified in the VM_HSAVE_PA MSR. Every field of 
the VMCS is associated with a 32-bit encoding, which can be provided as an operand to 
VMREAD or VMWRITE instructions when the hypervisor wishes to read or write that field. 
This type of access allows Intel to implement a VMCS according to the current layout of VMCS 
without causing compatibility problems with existing VMMs. 

 

11.1.1 Sensitive but Unprivileged Instructions 
According to Popek and Goldberg [PG74], classical virtualization requires that when a VM 
attempts to execute a sensitive instruction, it is guaranteed to trap automatically and signal the 
VMM. Back in the late 90's Robin and Irvine [RI00] examined the x86 architecture and found 17 
sensitive but unprivileged instructions which don't meet this requirement. For example, the 
POPF instruction, one of sensitive and unprivileged instructions, pops a word from the top of the 
stack and stores the value in the lower 16 bits of the EFLAGS register, hence allowing values in 
the EFLAGS register to be changed that could impact the performance of another VM, thus 
violating classic virtualization concepts. Since Robin and Irvine's analysis, Intel has added over 
500 new instructions through various language extensions. We examined these additional 
instructions and discovered 9 more instructions that also fall into this category:  
MWAIT/MONITOR, XSAVE/XRSTOR, XSAVEOPT, RSM, XGETBV, and 
SYSCALL/SYSENTER. Fortunately, Intel VT-x provides VM exit mechanisms to handle most 
of these instructions (We will evaluate these in Section13.2.1.1) if the VMM designer so 
chooses. Table 46 lists these 26 sensitive but unprivileged instructions and corresponding 

 
Figure 33: State of VMCS and VMX Operation 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
128 

solutions in Intel VT-x. Appendix E provides details for all instructions that cause VM exits in 
Intel 64 architecture. 

 
Table 46: Corresponding settings for 26 sensitive but unprivileged instructions which cause VM 

Exits in Intel VT-x 

26 Sensitive but Unprivileged  
Instructions 

Conditions to Cause VM  Exits from VMX 
Non-Root Operating Mode in Intel VT-x 

SGDT, SIDT, SLDT, STR “Descriptor-table exiting”  VM-execution control is 1 

CALL, JMP, INT n Task Switches not allowed 
RET IRET (“NMI exiting” and “ virtual NMIs” VM- 

execution control are 1) 
MOV MOV instructions that load/store control registers, such 

as MOV to/from CR0/CR3/CR8; “user TPR shadow” 
VM-execution control is 1 

PUSHF(D)/POPF(D) At  the beginning of any instruction if RFLAGS.IF  is 1 
and “interrupt-window exiting” VM-execution control is 1 

 PUSH/POP Not caught in VM exit 
LAR, LSL, VERR, VERW Not caught in VM exit 
MWAIT/MONITOR “MONITOR  exiting”   or  “MWAIT   exiting” 

VM-execution control is 1 
RSM If executed in SMM 
XSAVE/XRSTOR/XSAVEOPT Not supported in Intel Core i7-860. 
XGETBV Specifying a reserved or unimplemented XCR 

in ECX causes a general protection exception 
SYSCALL/SYSENTER SYSCALL is only supported in 64-bit mode 

 
The following provides a more detailed description of these extra 9 instructions why they 

belong to the category of sensitive but unprivileged instructions. MWAIT/MONITOR allows the 
hardware to set up a linear address range to be monitored. The processor stops executing 
instructions and enters an implementation-dependent optimized state while waiting for an event 
or a store operation to the address range armed by MONITOR, thus causing the processor to enter 
a different state. The instruction RSM returns control from SMM (System Management Mode25) 
to program or procedure, which affects the mode of the processor. SYSCALL/SYSENTER 
queries or changes the privilege level of the system by fast calling to ring 0 system procedures. 
XGETBV reads the XCR (Extended Control Register) which is a sensitive register. The 
instructions XSAVE/XRSTOR save/restore processor extended states to/from memory, thereby 
changing or referencing the processor state. XSAVEOPT which saves processor extended states 
optimized also changes the processor states. How these instructions are managed in our 
prototype IAVMM is illustrated in Section13.2.2. 

                                                 
25 SMM is a standard architectural feature in all IA-32 processors. This mode provides an OS or executive with 

a transparent mechanism for implementing power management features. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
129 

11.2 MEMORY 
For the convenience of memory virtualization, Intel's Extended Page Table (EPT) and AMD's 
Nested Page Table (NPT) are proposed as second-level page tables in the VMM, accompanied 
by the guest page table (a.k.a. the first-level page table) in each guest OS, as described in Section 
10.3.2. In addition, the following subsections also discuss shared memory access mechanism in 
the CBEA architecture. 

11.2.1 Extended Page Table and Nested Page Table 
As discussed in Section 10.3.2, the x86 architecture supports hardware translation of virtual 
addresses to physical addresses by use of the TLB. Entries in the TLB are updated by hardware 
that walks the page tables to find the relevant translation. The current root page table address is 
stored in control register 3 (CR3). Intel and AMD both virtualize CR3 to support VM memory 
management. Figure 34 presents address translations with Intel's EPT and AMD's NPT 
mechanisms. For Intel 64, guest linear/virtual addresses26 are translated to guest physical 
addresses through guest paging structures. The guest paging structure is referenced by the guest 
CR3 which is used to locate the top level of the guest's hierarchical page table, such as page 
directory for each guest VM. Guest physical addresses are then translated to produce host 
physical addresses by traversing a set of EPT paging structures, the address of which is specified 
in the EPT base pointer field (EPTP) while constructing the corresponding VMCS. Likewise, 
AMD provides gCR3 and  nCR3 for guest level and host level, respectively. The gCR3 points to 
guest page tables (gPT) in guest physical memory which map guest linear addresses to guest 
physical addresses for each guest virtual machine, while nCR3 points to nested page tables in 
system physical memory which map guest physical addresses to system physical addresses. 

 

 

                                                 
26 Intel did not add segmentation support to its x86-64 implementation (Intel 64), so the guest linear addresses 

are treated the same as guest virtual addresses. However, code segments continue to exist in 64-bit mode and the 
segment base is treated as zero. 

 
 

(a) Address Translation with Intel's Extended Page Table 
 

 
 

(b) Address Translation with AMD's Nested Page Table 
 

Figure 34: Intel's EPT and AMD's NPT Mechanisms 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
130 

The original architecture for VMX operation required VMX transitions to flush the TLBs and 
paging-structure caches. This ensured that translations cached for the old guest linear address 
space would not be used after the transition. In order to solve this problem, a VM specific tag, 
virtual processor identifier (VPID), is introduced in the VMX operation by which a logical 
processor may cache information for multiple linear address spaces. This allows the TLB to keep 
track of which TLB entry belongs to which VM and the TLB entries of different VMs can 
coexist peacefully in the TLB, provided the TLB is big enough. As a result, guest software can 
be allowed to handle its own page faults, thereby reducing the frequency of VM exits and 
therefore avoid costly virtualization overhead. AMD-V also developed a similar VM specific tag, 
address space identifier (ASID), to aid in retaining cached information and making the logical 
processor switch to a different linear address space smoothly. 

 
Using second-level page tables (EPTs or NPTs) associated with VM specific tag (VPID or 

ASID) has increased importance if there are multiple virtual CPUs per VM, because they have to 
synchronize the page tables many times with direct impact on the shadow page table update. 
With these tags in page tables, the CPU only has to synchronize TLBs as it would in a non-
virtualized environment. 

11.2.2 Shared Memory 
As an example of another approach to memory virtualization, this section focuses on the IBM 
CBEA architecture. There are one PPE (PowerPC Processor Element) and 8 SPEs (Synergistic 
Processor Elements) in the CBEA processor (Figure 13(c)). Accesses to an SPE from all other 
system units (PPE, other SPEs, and I/O devices) are provided through memory mapped IO 
(MMIO) registers. With respect to logical partitions executing on the PPE, an SPE can be 
allocated to the logical partition by the hypervisor granting access to the SPE MMIO registers, 
which can be divided into three groups based on privilege [IBM07b]. Privilege 1 registers (most 
privileged) are used by the hypervisor to manage the SPE on behalf of a logical partition; 
Privilege 2 registers are used by the operating system in a logical partition to manage the SPE 
within the partition; and Privilege 3 registers (least privileged) are used by problem-state 
software, if direct access to the SPE from user space is supported by the operating system. Figure 
35 presents the memory map of the CBEA processor's real-address space. The locations in the 
map are indicated by the sum of two values---an explicit offset added to a base real address. For 
example, “0x080000+SPE1 BE_MMIO_Base” means that the offset 0x080000 is added to 
the real address contained in the SPE1 BE_MMIO_Base base-address register. 

 
In the CBE architecture, the DRAM memory system is shared among the threads 

concurrently executing on the PPE and each of the SPEs. According to Moscibroda and Mutlu 
[MM07], the memory system is “unfairly” shared among multiple cores, which results in 
degrading performance of another application running on the same chip. As a consequence, there 
exists a case that one SPE occupies a shared memory region and thus prevents other SPEs from 
accessing these resources efficiently. They call this aggressive application Memory Performance 
Hog (MPH), which could become a prevalent security issue that could affect almost all computer 
users. More details about experiments on this subject are provided in Section 13.1.2. Previous 
studies have shown that frequently multiple memory requests are clustered together and occur in 
a short time period. A number of memory scheduling schemes [RDK+00, NALS06, ZLZZ08] 
have been proposed to maximize memory bandwidth utilization and achieve the best overall 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
131 

performance for single-core processors, even for multicore processors. CBEA architectures apply 
row-hit-first memory access scheduling algorithm. This scheme schedules row buffer hits before 
misses to reduce the average memory access latency and improve bandwidth utilization. 

 

11.3 I/O DEVICES 
Intel VT-d [Int08] and AMD-Vi (or IOMMU) [AMD09] extensions exist for I/O devices 
virtualization respectively since efficient I/O virtualization is an important consideration for 
hardware-assisted virtualization technology. 

 
AMD's IOMMU enables hardware assisted memory management in the form of two 

facilities: the Graphics Aperture Remapping Table (GART) and the Device Exclusion Vector 
(DEV). The GART provides address translation of I/O device accesses to a small range of the 
system physical address space, and the DEV provides a limited degree of I/O device 
classification and memory protection that is essentially a table that permits or blocks DMA 
access between devices and memory pages. Intel's VT-d provides further functionality beyond 
that of AMD's DEV, such as interrupt virtualization. For example, devices on the traditional x86 
could signal an interrupt using legacy I/O interrupt controllers or issue a message signaled 
interrupt (MSI) via DMA to a predefined address range, thereby violating the isolation property. 
Fortunately, VT-d redefines the interrupt-message format for MSIs by adding a message 
identifier and the hardware device's requester id in DMA writes to provide the necessary 
isolation [FO06]. Similar to IOMMU, VT-d helps the VMM better utilize hardware by 
improving reliability and security through device isolation using hardware assisted remapping, 
and improving I/O performance and availability using direct assignment of devices. VT-d 
incorporates software specified protection domains which restrict access only to dedicated 
devices assigned to a domain; unfortunately, it does not facilitate sharing a device among 
multiple guests, nor does IOMMU. A protection domain is abstractly defined as “an isolated 

 
Figure 35: CBE System Memory Map 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
132 

environment to which a subset of the host physical memory is allocated” [AJM+06]. This 
implementation enables protection domains to be applied for virtual machines as well as device 
drivers running in the VMM. 

11.4 EXTERNAL INTERRUPT 
Intel VT-x allows both host and guest control of external interrupts through their own IDT. Host 
vectors refer to vectors delivered by the platform to the processor during the interrupt 
acknowledgement cycle. Guest vectors refer to vectors programmed by a guest to select an entry 
in its guest IDT. To meet the interrupt virtualization requirements, a VMM needs to take 
ownership of the physical interrupts and the various interrupt controllers in the platform. VMM 
control of physical interrupts may be enabled through the host-control settings of the “external-
interrupt exiting” VM execution control. With guest control (external-interrupt exiting is clear), 
external interrupts do not cause VM exits and the interrupts delivery are masked by the guest 
programmed RFLAGS.IF value. With host control (external-interrupt exiting is set), external 
interrupts cause VM exits and are not masked by RFLAGS.IF. To take ownership of the platform 
interrupt controllers, a VMM needs to expose the virtual interrupt controller devices to the 
virtual machines and restrict guest access to the platform interrupt controllers. 

 
How Intel VT-x handles interrupt processing in a VMM is illustrated in the following steps. 

First, the VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This is 
done by setting the “external-interrupt exiting” VM execution control in the guest controlling-
VMCS. Then, interrupts are automatically masked by hardware in the processor on VM exit by 
clearing RFLAGS.IF. If the VMM is utilizing the acknowledge-on-exit feature (by setting the 
acknowledge-interrupt-on-exit bit in guest VM-exit control field), the processor acknowledges 
the interrupt, retrieves the host vector, and saves the interrupt in the exit-interruption-information 
field (in the VM-exit information region of the VMCS) before transiting control to the VMM. 
Finally, the VMM can use the saved host vector to switch to the appropriate interrupt handler. 

11.5 SECURE BOOTUP 
AMD's SVM provides additional hardware support that is designed to facilitate the construction 
of trusted software systems. For example, the SKINIT (Secure Kernel Init) instruction 
reinitializes the processor to establish a secure execution environment for secure loader (SL) and 
then starts execution of the SL in a way that cannot be tampered with. The SL typically 
initializes SVM hardware mechanisms and starts a security VMM in a completely trustworthy 
manner, including setting up Device Exclusion Vector (DEV) protection for memory allocated 
for use by SL and VMM. The trusted platform module (TPM) receives the SL image sent by 
SKINIT and verifies the signature based on a secure hash comparison. The use of this special 
protocol provides a reliable means for verifying the startup of a trusted VMM. Similarly, the 
SENTER instruction, one of a few new instructions introduced by Intel Trusted Execution 
Technology (Intel TXT) [Int09b], also defines policy enforcement in hardware to block launch of 
unauthorized hypervisors, thereby allowing the hypervisor to protect itself against tampering. 
Intel TXT technology has provided a reliable method called “measured late launch” to load a 
clean hypervisor in a secure manner. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
133 

11.6 VIRTUALIZATION OF SYSTEM RESOURCES 
When a VMM is hosting multiple guest environments (VMs), it must monitor potential 
interactions between software components using the same system resources. These interactions 
can require the virtualization of resources, which include debugging facilities, address 
translation, and physical memory. Before the description of this topic, we need to explain what 
resources are duplicated for each logical processor when Intel Hyper-Threading technology was 
introduced. 

11.6.1 State of the Logical Processor 
The following features are part of the architectural state of logical processors within Intel 64 
processors supporting Intel Hyper-Threading technology. The features can be subdivided into 
three groups: 

 
• Duplicated for each logical processor 
• Shared by logical processors in a physical processor 
• Shared or duplicated, depending on the implementation 
 
The following features are duplicated for each logical processor: 

 
• General purpose registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, and EBP) 
• Segment registers (CS, DS, SS, ES, FS, and GS) 
• EFLAGS and EIP registers. Note that the CS and EIP/RIP registers for each logical 

processor point to the instruction stream for the thread being executed by the logical 
processor 

• x87 FPU registers (ST0 through ST7, status word, control word, tag word, data operand 
pointer, and instruction pointer) 

• MMX registers (MM0 through MM7) 
• XMM registers (XMM0 through XMM7) and the MXCSR register 
• Control registers and system table pointer registers (GDTR, LDTR, IDTR, task register) 
• Debug registers (DR0, DR1, DR2, DR3, DR6, DR7) and the debug control MSRs 
• Machine check global status (IA32_MCG_STATUS) and machine check capability 

(IA32_MCG_CAP) MSRs 
• Thermal clock modulation and ACPI Power management control MSRs 
• Time stamp counter MSRs 
• Most of the other MSR registers, including the page attribute table (PAT). See the 

exceptions below. 
• Local APIC registers. 
• Additional general purpose registers (R8-R15), XMM registers (XMM8-XMM15), 

control register, IA32_EFER on Intel 64 processors 
 
The following features are shared by logical processors: 
 
• Memory type range registers (MTRRs) 
 
Whether the following features are shared or duplicated is implementation-specific: 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
134 

 
• IA32_MISC_ENABLE MSR (MSR address 1A0H) 
• Machine check architecture (MCA) MSRs (except for the IA32_MCG_STATUS and 

IA32_MCG_CAP MSRs) 
• Performance monitoring control and counter MSRs 

11.6.2 Virtualization of System Facilities 
The following system facilities are virtualized for virtual machines: 

 
• Some MSRs. MSRs affect processor features, control the programming interfaces, or are 

used in conjunction with specific instructions. Intel VT-x virtualizes processor MSRs via 
VM execution controls (MSR bitmaps), VM-Exit controls, VM-Entry controls and some 
instructions (i.e. SYSENTER/SYSEXIT, SYSCALL/SYSRET, and SWAPGS). 

• Debug facilities. In VMX operation, a VMM can support debugging a system and 
application software from within virtual machines if the VMM properly virtualizes 
debugging facilities. For example, the VMM can program the exception-bitmap to ensure 
it gets control on debug functions (e.g. breakpoint exception). The VMM may utilize the 
VM-entry event injection facilities to inject debug or breakpoint exceptions to the guest. 
MOV-DR exiting control bit for VM exit is implemented. 

• Memory virtualization mechanisms. Memory virtualization allows the VMM to enforce 
control of physical memory and yet support guest OSs' expectation to manage memory 
address translation. Memory virtualization is required to support guest execution in 
various processor operating modes through the appropriate configuration of CR0 and 
CR4. VMX provides the hardware features required to fully virtualize guest virtual 
memory accesses, including allowing the VMM to trap guest accesses to the PAT (Page 
Attribute Table) MSR and the MTRR. Because a guest OS expects to perform normal 
memory management functions, it will access CR3, execute INVLPG, and modify page 
directories and page tables. Virtual TLB mechanism is provided for this purpose and 
avoids overhead. 

• External interrupts. VMX operation allows both host and guest control of external 
interrupts. While guest control of external interrupts might be suitable for partitioned 
usages (different CPU cores/threads and I/O devices partitioned to independent VMs), 
most VMMs built upon VMX are expected to utilize host control of external interrupts. 
With host control of external interrupts, the VMM exposes software-emulated virtual 
interrupt controller devices (such as PIC and APIC) to each guest VM instance, such as 
directly mapping the physical device to the assigned VM. 

 
The detailed virtualized registers are implemented by constructing VMCS for each VM. 

Appendix F gives a list of virtualized resources for each VM. 

11.7 HARDWARE VIRTUALIZATION TECHNOLOGY SUMMARY 
Based on the aforementioned analysis, Intel VMX and AMD SVM extensions both offer 
hardware assisted support for efficient virtualization in order to improve virtualization 
performance and reliability. Intel VT-x extensions are conceptually the same as those 
implemented in AMD-V (see Table 47) but many of the details differ, such as the fact that 
AMD64 memory controller is on-die with the CPU, while the Intel implementation is on a 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
135 

separate chip and may be implemented differently depending on the chipset used. There are still 
other small differences between them, e.g. interrupt virtualization. 

 
Table 47: Summary of HVT Support between Intel VT-x and AMD-V 

 Intel VT-x (VMX) AMD-V (SVM) 
VM Data Structure VMCS VMCB 
VM Extension VM extensions (VMX) Secure VM (SVM) 
I/O Virtualization Intel VT-d AMD-Vi (a.k.a. IOMMU) 
MMU Virtualization Extended Page Table Nested Page Table 
Tagged TLB Entries VPID ASID 
Secure Bootup SENTER SKINIT 

 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
136 

 A LIGHTWEIGHT VIRTUAL MACHINE MONITOR FOR SECURE 12
ANALYSIS OF MULTICORE ARCHITECTURES 

 
With the trend towards multicore CPUs, it is naturally necessary for VMMs to support multiple 
cores. We are interested in a small VMM that will allow us to develop experiments that we could 
run in VMs and evaluate security features of the underlying Intel 64 hardware with hardware-
assisted virtualization technology. Based on our review of existing VMMs (e.g. TVMM [Kan06] 
and MAVMM [NSJ+09]), we decided to create our own Intel-based Security Analysis VMM 
(IAVMM). In this chapter, we present our lightweight virtual machine monitor for Intel based 
machines, IAVMM, as well as the corresponding explanations for our architecture design. By 
taking advantage of hardware virtualization support and concentrating only on security analysis 
functionality issues, we were able to build a lightweight VMM and keep it thin and simple. 

 
Our proof-of-concept VMM platform borrows some concepts from MAVMM project 

[NSJ+09] and extends it to support the Intel 64 architecture, as presented in an earlier paper 
[HAF11]. A more specific description of the prototype is discussed in detail in the following 
sections. 

12.1 BOOTSTRAPPING 
Our IAVMM executable is stored in a simplified 32-bit ELF format27 readable by GRUB Legacy 
[GRU] that is used as a boot loader to start our system, can be booted up directly from USB flash 
drive (or external hardware) successfully, which means that it is a Type I VMM and actually 
boot on bare hardware machine. Once power is reset, after IAVMM is selected from the GRUB 
menu, GRUB starts in host mode and begins to load IAVMM kernel, which boots along with 
arguments such as memory map and command line parameters that are passed to IAVMM 
through a multiboot information structure. 

 
Initially IAVMM enters root operating mode, then how to start a guest VM becomes a 

natural question. Three alternative ways were evaluated to pass the guest OS image to IAVMM 
for the guest VM. The first approach, similar to TVMM, is to use the module parameter specified 
in GRUB configuration and then execute this image directly after the VMLAUNCH instruction is 
called. Unfortunately, this requires the booting environment to be exactly as expected by the 
guest OS, which makes the configuration very complicated. The second is to execute GRUB in 
guest mode and then boot the guest OS. Address 0x7c00, the beginning address of loaded 
master boot record which contains executable code of GRUB boot loader, is set in GUEST_RIP 
as guest initial instruction pointer address. Once the VMLAUNCH instruction is invoked, the 
guest instruction pointer points to 0x7c00 and switches to the GRUB boot selection menu. The 
third method is what we finally decide to use in IAVMM. We build a guest_OS image as the 
guest virtual machine, consisting of some research experiments for security analysis, and include 
it in our IAVMM image. In order to boot up the guest VM, VMM assigns the initial address of 
this guest OS image to GUEST_RIP during construction of the VMCS data structure, and 

                                                 
27 We use the Xen tool mkelf32 to build this ELF image from raw object files. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
137 

initializes the HOST_RIP field with the address of the function VMX_VMExit_Handler, to 
handle the VM exit procedure once a VM exit occurs. 

12.1.1 AP Booting Procedure 
One of our primary goals is to examine the potential security concerns among multiple cores. 
Therefore, at least one Application Processor (AP) as well as BootStrap Processor (BSP) are 
supposed to run in a VM system. In order to wake up the AP, the booting code must be relocated 
to low memory (first 1 MB of physical memory) since the AP can only be booted in real-address 
mode. Upon receiving an INIT IPI (Interprocessor Interrupt) from BSP, a local APIC causes an 
INIT at the AP processor. Then the BIOS causes the current processor to jump immediately to a 
specific location, where we store the code the processor will execute after waking up. This code 
switches the system processor to protected mode and jumps to the kernel. This small piece of 
code in low-memory is called trampoline code since it bounces the processor back up to higher 
memory. In order to perform this jump, system needs to process a warm-reset procedure. 
IAVMM first puts an appropriate pointer in the warm-reset vector28, and sets the shutdown code 
by assigning address 0xf (0:f in real-address mode) to 0xa, and then causes an INIT IPI for 
the current processor to jump immediately to a specific location, where we store the trampoline 
code. The beginning address of the trampoline code must be page-aligned. IAVMM sets a bit to 
indicate which processor is currently running and clears any APIC error by writing a zero to the 
error status register. IAVMM can pass any parameters to the AP at this time if necessary. 

 
By now IAVMM can actually start booting the AP processor, involving of sending a 

sequence of interrupts to the AP processor (see Figure 36). First, BSP sends an INIT IPI and 
asserts the INIT signal by writing the target processor's APIC ID to the high word of the ICR, 
then writes to the low word with the bits set to enable the INIT delivery mode, level triggered, 
and assert the interrupt. Deasserting INIT is not necessary for Intel Core i7. Then, IAVMM must 
wait 10ms to allow signals to propagate. Two STARTUP IPIs are needed to proceed in the next 
step with the routine. Clear APIC errors, set the target APIC ID in the ICR, and then send the 
interrupt by writing to the low word of the ICR with bits set for STARTUP delivery mode and 
with the code vector in the low byte. The code vector is the physical page number of the 
trampoline code, at which the processor should start executing. Wait 200µs, and then check the 
low doubleword of the ICR to make sure bit 12 is reset to indicate the message was dispatched 
before sending the second STARTUP. After these two STARTUP IPIs are sent successfully, the 
AP wakes up in real mode.  

                                                 
28 IAVMM sets the warm reset vector at address 40:67 to the start of the trampoline code, which should reside 

in low memory. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
138 

 

12.2 OPERATING MODES 
As usual, an Intel processor provides a set of memory-management tables that are designed to 
support basic system-level operations, including Global Descriptor Table (GDT) and Local 
Descriptor Table (LDT). These tables contain entries called segment descriptors, which provide 
the base address of segments as well as access rights, type, and usage information. When 
operating in protected mode, all memory accesses pass through either the GDT or the LDT. The 
GDT Register (GDTR) holds the base address and the 16-bit table limit for the GDT, so does 
LDTR. The base address specifies the linear address of byte 0 of the GDT; the table limit 
specifies the number of bytes in the table. Figure 37 depicts the GDT settings in IAVMM. Ring 0 
entries are specified for the VMM level, whereas Ring 3 entries are particular for guest VM 
level29. Take the third entry (Index 2 shown in the table) as an instance. Because segmentation is 
disabled in long mode and code segments span all of virtual memory, the code segment base 
addresses are ignored. For the purpose of virtual address calculations, the base address is treated 
as if it has a value of zero, and the 20-bit segment limit ranges from 0 to 0xfffff (1 MB). In 
this entry, the long (L) attribute bit and present (P) bit indicating that the segment referenced by 
the descriptor is loaded in memory are all set. The privilege level of this code segment (DPL, 
Descriptor Privilege Level) is zero. 
 

 
                                                 
29 Of course guest VM can be specified with Ring 0 Level. We set it to Ring 3 for research convenience. 

 
Figure 37: Global Descriptor Table in IAVMM 

BSP sends PA and INIT IPI 
BSP delays 10ms 
(BSP sends AP a deassert INIT IPI) 
for (i=0; i<=2; i++){ 
  BSP sends AP a STARTUP IPI 
  BSP delays 200μs 
 

Figure 36: Application Processor Startup Procedure 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
139 

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM entries. 
The boundary conditions that define what a VM is allowed to execute in isolation are specified in 
a VMCS. In addition, processors may fix certain bits in CR0 and CR4 to specific values and not 
support other values, for example, the upper bits from bit 18 in CR4 are all reserved to 0. The 
first processor to support VMX operation requires that CR0.PE and CR0.PG be 1 in VMX 
operation. Thus, a VM entry is allowed only to guests with paging enabled that are in protected 
mode or in virtual-8086 mode. Guest execution in other processor operating modes needs to be 
specially handled by the VMM, such as guest execution in real-mode or in protected mode with 
paging disabled. As for the latter case, a VMM needs to use “identity” page tables to emulate 
unpaged protected mode in order to support such guest execution. 

 
In IAVMM, both guest system and host system support 64-bit mode (long mode). Following 

a power-up or RESET initialization instructions, the processor is placed in 16-bit real mode first 
and processor resources are initialized to a known, consistent state, from which software can 
begin execution, such as the Bootstrap Processor's (BSP) fetching the first instruction that is 
located at physical-address 0xFFFF FFF0. In this real mode, IAVMM loads the Interrupt 
Descriptor Table Register (IDTR) and Global Descriptor Table Register (GDTR) with pointers 
initially pointing to the corresponding data structures. Upon completion of establishing the real-
mode environment, protected mode can be enabled by setting CR0.PE and then software can 
switch to protected mode environment. In protected mode, IAVMM initializes system data 
structures required by long mode. For example, IAVMM must be in protected mode with paging 
enabled before attempting to initialize IA-32e mode, and the long mode paging table must be 
located in the first 4 GBytes of physical-address space prior to activating IA-32e mode. This is 
necessary because the MOV_CR3 instruction used to initialize the page-directory base must be 
executed in legacy mode prior to activating IA-32e mode. As long as these long mode data 
structures are initialized and paging is disabled as well, software can enable and activate long 
mode by setting long-mode-active status bit EFER.LMA to 1. On the Intel 64 architecture, the 
IA32_EFER MSR is cleared on system reset. In general, switching the processor to long mode 
involves sequences like disabling paging (CR0.PG = 0), enabling physical-address extensions 
(CR4.PAE = 1), loading CR3, enabling long mode (EFER.LME = 1), and finally enabling paging 
(CR0.PG = 1). If these are not executed in this sequence, the system may crash. In long mode, 
the system-descriptor-table registers (GDTR, LDTR) continue to reference previous 
corresponding protected-mode descriptor tables. After switching to long mode, 64-bit operating 
systems should use the LGDT and LLDT instructions to load these registers with references to 
64-bit descriptor tables. 

12.3 MEMORY LAYOUT 
Memory layout is a very important feature we need to manage due to the required isolation 
property of VM systems. Not all of the machine's physical memory address spaces are available 
to the system. Some memory is reserved by the BIOS, while some is used by ACPI30, and so on. 
The information about which regions are available and which are reserved by the system is 

                                                 
30 Advance Configuration and Power Interface (ACPI) specification provides an open standard for device 

configuration and power management by the operating system, which defines ACPI tables, ACPI BIOS and ACPI 
registers. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
140 

provided in a structure called e820 memory map31 which can be queried for the future use. 
IAVMM only allocates necessary space in the available memory, which is in a BIOS-provided 
available physical RAM e820 range (see Table 48). As shown in the table, most of first 1 MB 
physical memory is reserved. 

 
Table 48: BIOS-provided available physical RAM E820 ranges (with 4 GB RAM) 

Start End 
0x0000  0000 0x0009  F800 
0x000A  0000 0x000E  4000 
0x0010  0000 0x7F77  0000 
0x8000  0000 0xFEE0  0000 
0xFEE0  1000 0xFFA0  0000 

 
IAVMM allocates the low 128 MB memory for guest virtual machines while the host VMM 

occupies the last 32 MB of physical memory assigned to the host area (in the case of one VMM) 
as shown in Figure 38. There are two reasons for this memory layout and management. The first 
is that we can perform identity mapping between guest physical addresses and host physical 
addresses, thereby simplifying access to I/O. The second is that it is enough to load guest VMs in 
128 MB space for our research experimentation. 

 

 

12.3.1 Memory Layout in Single VM System 
In the memory design of one VM system in our IAVMM, the first 128 MB memory is reserved 
for one guest VM and the image space of the IAVMM is allocated following this space. This 
means that the booting entry of IAVMM image would be the physical address 0x800000 or 
128 MB decimal. The next section is set aside for Allocation Bitmaps area, consisting of host 
memory bitmap and guest memory bitmap. The bitmap adopts bit arrays to refer to a spatially 
mapped array of memory. Managing these two bitmaps separately allows us to protect host 
memory from the guest behavior. VMM heap area32 starts right after Allocation Bitmap area. 
The first field dynamically allocated out of the heap is the EPT. The following region to be 

                                                 
31 e820 refers to the facility by which the BIOS of x86 architecture reports the memory map to the operating 

sytsem or boot loader. 
32 The reason we identify this range as heap area is that we handle it dynamically if necessary. In other words, 

the Dynamic allocation mechanism of the heap area conveys that we shouldn't ask for memory space unless we need 
it. 

 
 

Figure 38: Memory Layout of IAVMM 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
141 

allocated depends on whether or not a guest ELF image is configured. If an ELF image is 
specified as a module to the system, this area is allocated to load the ELF image. Otherwise it is 
allocated to other necessary structures for the VMM. 

 
To address the needs of storing virtual machine state information, VMXON and VMCS areas 

are allocated for each logical processor to support VMX operations. The VMXON and VMCS 
pointers must be 4-KByte aligned. Before entering VMX operation, the host VMM must allocate 
a VMXON region, the physical address of which is provided in an operand to VMXON 
instruction. The VMM uses a separate VMXON region for each logical processor and should not 
access or modify the VMXON region of a logical processor between execution of VMXON and 
VMXOFF on that logical processor. A unique VMCS region is required to store data for each 
virtual machine and is used for communication and coordination between the VMM in root-
mode and the VM in non-root mode. The VMM needs to prepare data fields in the VMCS that 
control the execution of a VM upon a VM entry. Before leaving VMX operation, a VMM is 
recommended to VMCLEAR all active VMCSs (those for which VMPTRLD has been 
executed), which ensures that all VMCS data cached by the processor are flushed to memory and 
that no other software can corrupt the current VMM's VMCS data. For management purposes, a 
VMCS revision identifier must be written to the VMXON region so as to enable the VMM to 
avoid using a VMCS region formatted for one processor on another processor that uses a 
different format. Once in VMX root operation mode, the system initializes some specific fields 
of the VMCS (using VMWRITE instruction) that guide execution of a VM upon a VM entry. 

12.3.2 Memory Layout in Multiple VM Systems 
In the above, we specified the memory layout in the case of a single VMM with one guest VM, 
shown in Figure 38. From the perspective of VMM, it can access the whole memory. However, 
the guest can access all the memory except the VMM region (128 MB - 160 MB), which protects 
the VMM region from modification by guest VM. 

 
For the multicore system, we need multiple VMMs with multiple VMs, and the physical 

memory layout will be different because of the resource isolation property for multiple VM 
systems. To get an accurate view of the VM systems, Figure 39 presents the memory layout of 
two VMMs with two guest VMs. In this case, the first low 64 MB memory is shared by both of 
VM systems, wherein part of the first 1 MB is used to store the application processor booting 
procedure, since the application processor can only be booted from real-address mode. Since we 
are developing IAVMM for research experimentations, this shared memory would be accessible 
to all guest VMs and VMMs, and will not cause a security problem for our experiments. The 
following two 32 MB spaces are allocated to two guest VMs (GVM1 and GVM2), respectively. 
Two host VMMs occupy respective physical memory of size 32 MB starting from the physical 
address 128 MB, wherein the IAVMM image is located right after the guest space as single VM 
system does, which takes up 2 MB. Each of the four systems (GVM1, GVM2, VMM1 and 
VMM2) is allocated 32 MB memory. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
142 

 
From the perspective of memory protection, IAVMM needs to specify high privileged 

information invisible to guest VMs, hence protecting this sensitive information from being 
tampered with by the guest. From this point, we can reconfigure paging maps within the 
Extended Paging Tables (EPTs) to satisfy this security strategy so as to guarantee memory 
protection and offer better resource isolation. By building up the EPT appropriately, IAVMM 
redirects guest requests to access their own memory region (gray area), and hides the existence 
of other regions (blank area). Figure 40 and Figure 41 illustrate how this works for memory 
protection. 

 

 

 
Figure 40: Memory Translation from a VMM2 Viewpoint 

 

 
 

Figure 39: Memory Layout in Multicore Systems 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
143 

 
 
Figure 41 depicts the memory layout of EPT from the perspective of Guest VM2, which 

translates the guest physical address to the host physical address. The gray section in the figure is 
visible to the guest VM2 while the blank areas are not; that is, the guest VM2 is permitted to 
access the first low 64 MB shared memory, guest VM2 region, 2 MB host kernel (H. K.) area 
and the remaining spare area after the memory address of 192 MB. We can treat the host kernel 
the same as the image in the first low 1 MB, since both of them should be theoretically invisible 
to guest OS. IAVMM hides both guest VM1 and VMM areas from guest VM2. It seems that a 
guest VM is able to access a continuous block of memory, although the memory space is actually 
split into separate pieces of regions. From the VMM2 point of view, IAVMM also enables 
VMM2 regions available along with the aforementioned areas (gray sections in Figure 40). The 
same strategy is applied to VMM1 and corresponding guest VM1 as well. In this way, VMM2 
can only access its corresponding guest VM (GVM2) rather than other guest VMs (e.g. GVM1), 
similarly with VMM1. Beyond the protection rings the hardware-assisted virtualization 
technology support, we provide this software solution to implement resource isolation to 
improve the reliability of TCB. 

12.4 IAVMM PAGING SYSTEM 
 
In our IAVMM prototype, we create host page table for the host VMM. The host page table 
covers the whole memory mapping including guest memory address and host memory address in 
IA-32e. Extended Page Tables are also built to support a second-level memory translation. In this 
section, we depict host page tables and EPT details, respectively, and illustrate the memory 
mapping with different page frames of size 2 MB and 4 KB. 

 
Figure 41: Memory Translation of EPT from a GVM2 viewpoint 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
144 

12.4.1 Host Page Tables 
As Figure 42 illustrates, host linear addresses are translated using a hierarchy of in-memory 
paging structures located using the contents of host CR3 which refers to the PML4 (Page Map 
Level 4) table. A 4-Kbyte naturally aligned vmm_pml4_table is set up as the PML4 table, which 
comprises 512 64-bit PML4E entries. The following 4 KB naturally aligned page-directory-
pointer table (vmm_pdp_table) consists of 512 64-bit PDPTE entries. In the 2-MByte page frame 
case, vmm_pdir_table is initialized as the page-directory table with 512 64-bit PDE entries and 
the remaining 21-bits are allocated as the offset for a 2 MB page. In short, IAVMM memory 
mapping consists of 1 PML4E entry associated with 4 PDPTE entries, each of which maps 512 
PDE entries with 2 MB page size per entry. Other unused entries in this 4-level paging structure 
are filled with zero. In this way, we have memory mapping of size 4 GB (4 GB = 1 * 4 * 512 * 2 
MB). Similar with 2 MB page frame case, 4 KB page frame paging system just divides the last 
21bits into two tables; the vmm_pte_table takes up the upper 9 bits, while the remaining 12-bit is 
allocated as the offset for a 4 KB page. 

 
In our prototype, the guest page table is initialized to be identical to the host page table with 

the same format paging-structure entries, since we are just setting up the system for experiments. 

 

12.4.2 Extended Page Table 
The EPT mechanism is enabled when the flag  “enable EPT” is set, which is controlled by 
secondary processor-based VM-execution control; that is, both the 31st bit flag “activate 
secondary controls” of the primary processor-based VM-execution control and the second bit 
flag “enable EPT” of the secondary processor-based VM-execution control need to be set to 
enable such mechanism. 

 

 
Figure 42: Linear-Address Translation to a 2 MB page using IA-32e paging (Intel). 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
145 

The translation from guest virtual address to guest physical address is governed by the guest 
OS, while the EPT is handled by the VMM. If CR0.PG is set, the guest virtual addresses are 
translated using a hierarchy of in-memory guest paging structures located by the contents of 
gCR3 (see Figure 34) and then guest physical addresses are translated by traversing a set of EPT 
paging structures to produce host physical addresses that are used to access memory. There are 
no guest paging structures if CR0.PG is clear; that is, each guest virtual address is treated as a 
guest physical address. With IA-32e paging, EPT pointer (EPTP) is specified to locate the first 
paging-structure, which is the physical base address of the Level 4 page map table (PML4) for 
the host physical address translation mechanism in our IAVMM system. IA-32e paging for Intel 
64 processors may map virtual addresses to 4 KB pages, 2 MB pages, or 1 GB pages. IAVMM 
covers a structure case of either 2 MB page frame or 4 KB page frame. The EPT translation 
mechanism uses only bits 47:0 of each guest-physical address. It uses a page-walk length of 4, 
meaning that at most 4 EPT paging structure entries are accessed to translate a guest physical 
address. EPT in IAVMM maps all 4 GB memory except VMM region, which enable the system 
to hide VMM memory. A general-protection exception (GPe) is thrown when the guest tries to 
access this area. 

 
The EPT in IAVMM system is created as shown in Figure 43 All of the 4 GB physical 

memory is mapped in 4-Level paging structure except the VMM region which is hidden to 
prevent it from tampering by guest OS. The prototype function mmap_pml4(eptp, guest_paddr, 
host_paddr) provides the paging mapping from guest physical address to host physical address. 
The implementation of mmap_pml4()  function is in file page.c. It traverses deeply to build every 
EPT paging structure entry step by step from the top level PML4 through the bottom level PT if 
4 KB page frame is to be built. The 4-Level is specified as PGT_LEVEL_PML4, 
PGT_LEVEL_PDP, PGT_LEVEL_PD, PGT_LEVEL_PT. 

 

 
 
As shown in Figure 42, these 48 bits are partitioned to traverse the EPT paging structures. A 

4 KB naturally aligned EPT PML4 table is located at the physical address specified in bits 51:12 
of the extended page table pointer (EPTP). An EPT PML4 table comprises 512 64-bit entries 
(EPT PML4Es). A 4 KB naturally aligned EPT page directory pointer table is located at the 
physical address specified in bits 51:12 of the EPT PML4E, which also comprises 512 64-bit 
entries (PDPTEs). Similarly, a 4 KB naturally aligned EPT page directory is located at the 
physical address specified in bits 51:12 of the EPT PDPTE, which comprises 512 64-bit entries 
(PDEs). In 4 KB page frame case, a 4 KB naturally aligned EPT page table (PTE) is located at 
the physical address specified in bits 51:12 of the EPT PDE. 

 

for (guest_paddr in all 4GB memory){ 
  Skip the necessary hidden VMM region; 
  Identity memory map guest_paddr to host_paddr 
    based on 4-Level Paging structure, e.g. 
    mmap_pml4(eptp, guest_paddr, host_paddr); 

 

Figure 43: The procedure to create EPT 

 
 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
146 

Although the algorithm to build the paging structures of EPT and host page table is almost 
the same, there are still some conceptual differences between both of paging-structure entry's 
flags. While creating these page tables, these flags need to be configured as shown in Table 49. 
The first 3 bits in each entry flags have different meanings for host/guest page tables and EPT. In 
2 MB page frame case, for host page table, P, R/W and U/S are set for vmm_pml4_table and 
vmm_pdp_table entries, while P, R/W and PS (Page Size bit) are set for vmm_pdir_table entries. 
However, for EPT, R, W and E are set for pml4_table and pdp_table entries, while R, W, E and 
PS (Page Size bit) are set for pdir_table entries. 

 

Table 49: Different Flags between host/guest page table entries and EPT entries 

 Host/Guest Page Table Entries EPT entries 
Bit 0 Present (P) Read Access (R) 
Bit 1 Read/Write (R/W) Write Access (W) 
Bit 2 User/Supervisor (U/S) Execute Access (E) 

12.5 VM LAUNCHING PROCESS 
There are two necessary steps to launch a guest VM. The first is to set up a VMM environment, 
and the second step is to launch the guest VM. 

12.5.1 VMM Setup 
VMMs need to ensure that the processor is running in protected mode with paging enabled 
before entering VMX root operation. The following list describes the minimal steps required to 
enter such an operation with a VMM running at CPL=0. 

 
• Check if CPUID.01H:ECX.VMX[bit 5]=1 to determine that the processor has VMX 

support. 1H is the input value for EAX, and ECX.VMX[bit 5] means that the output 
register ECX and field name with bit 5. The value 1 is the output. 

• Create a VMXON region in non-pageable memory of a size 4-KBytes. 
• Initialize the version identifier in the VMXON region with the VMCS revision identifier 

reported by IA32_VMX_BASIC MSR. 
• Ensure the current processor operating mode meets the required CR0 and CR4 bits, such 

as CR0.PE=1, CR0.PG=1, and CR4.VMXE=1. 
• Ensure that IA32_FEATURE_CONTROL MSR has been properly programmed and that is 

lock bit is set, which means that any WRMSR instruction to this MSR will cause a 
general exception. 

 
Upon successful execution of VMXON instruction with the physical address of the VMXON 

region as the operand, the processor is in the VMX root operation. A VMM might leave VMX 
operation by executing VMXOFF instruction. 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
147 

12.5.2 Handling of Guest VM Launching 
The following list describes the minimal steps required by the VMM to set up and launch a guest 
VM. 

 

1. Create a VMCS region in non-pageable memory of a size 4-KBytes. 
2. Initialize the version identifier in the VMCS region with the VMCS revision identifier 

reported by IA32_VMX_BASIC MSR. 
3. Execute the VMCLEAR instruction by supplying the guest-VMCS address and then the 

VMPTRLD instruction. 
4. Construct a VMCS by issuing a sequence of VMWRITES to initialize various fields in 

the working VMCS, including various host-state fields, guest-state fields, and VM-exit 
control fields. 

5. Execute VMLAUNCH to launch the guest VM. 
 
Executing VMLAUNCH to launch the guest VM updates the controlling-VMCS pointer with 

the working-VMCS pointer and saves the old value of controlling-VMCS as the parent pointer 
(see Figure 33). In addition, the launch state of the guest VMCS is changed to “launched”. 

12.6  HANDLING OF VM EXITS 
After a guest VM is running, the VMM can retain control through VM exit mechanisms. During 
construction of a VMCS for a guest VM, a number of VM execution control fields are provided 
to govern VMX non-root operation by specifying the instructions and events that cause VM 
exits. An exception results when a logical processor encounters an unusual condition that 
software may not have expected and then if the bit corresponding to the exception's vector is set 
in the exception bitmap, the exception causes a VM exit. When the condition causing an 
exception was established by the VMM itself, the VMM may choose to resume guest software 
after removing the condition. For example, the VM-execution control fields can set the 
conditions for triggering a VM exit, such as setting “HLT exiting33” and “MWAIT exiting34” in 
Processor-based VM-Execution Controls fields [Int09a]. After handling these VM exits, VMM 
software can resume guest software by VMRESUME instruction. With no change to VMCS, the 
VM will resume the same instruction that was executing when VM exit occurred. If the exit was 
to emulate a privileged or sensitive instruction, the VM exit handler must increment the program 
counter in the VMCS region before resuming. 

 
This section describes the architectural state that exists before a VM exit, especially for VM 

exits caused by events that would normally be delivered through the IDT in our IAVMM 
platform. For example, an exception causes a VM exit if the bit corresponding to that exception 
is set in the exception bitmap. Note the following: 

 

• EXCEPTION_BITMAP_MC: If a machine-check exception happens. 
• EXCEPTION_BITMAP_UD: If an UD instruction is executed. 
• EXCEPTION_BITMAP_PF: If a page fault exception happens. 
• EXCEPTION_BITMAP_NM: If a non-maskable interrupt happens. 
                                                 
33 HLT exiting control determines whether executions of HLT cause a VM exit. 
34 MWAIT exiting control determines whether executions of MWAIT cause a VM exit. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
148 

 
The following lists the trigger conditions set in VM-execution control fields that would cause 

VM exits in our IAVMM platform. 
 
• NMI exiting:  When both of this control and the bit in the exception bitmap associated 

with exception's vector are set, non-maskable interrupts (NMIs) cause a VM exit; 
• External-interrupt exiting: When this control is set and an external interrupt arrives, the 

MWAIT instruction causes a VM exit if this control is set; 
• MWAIT-exiting: The MWAIT instruction causes a VM exit if this control is set; 
• MONITOR-exiting: The MWAIT instruction causes a VM exit if this control is set; 
• MOV-DR exiting: The MOV DR instruction causes a VM exit if this control is set; 
• WBINVD exiting: The WBINVD instruction causes a VM exit if this control is set. 
 
Once a VM Exit occurs, the exit reason will be recorded in the VM-exit information fields, 

which can be inspected by the VMM software. After the host decodes the reason for the exit, it 
can decide what to do next. In addition to the aforementioned controls, there are other 
instructions causing VM exits when they are executed in VMX non-root operation: CPUID, 
GETSEC, INVD, and XSETBV. This is also true of instructions introduced with VMX, which 
include the following: INVEPT, INVVPID, VMCALL, VMCLEAR, VMLAUNCH, VMPTRLD, 
VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, and VMXON. 

12.7 SUMMARY 
We developed a lightweight VMM (IAVMM) that is designed especially for security analysis of 
Intel 64 architectural features. IAVMM does not implement unnecessary35 virtualization features 
commonly found in general purpose hypervisors, such as Xen and VMWare. By taking 
advantage of hardware virtualization support and no need to use any Linux kernel APIs, we can 
make IAVMM thin and simple. 

                                                 
35 We don't implement I/O and network. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
149 

 EVALUATION EXPERIMENTS IN MULTICORE SYSTEMS 13
 

When investigating hardware security, it is critical to recognize that a multicore system is more 
than just a group of single cores. The researchers must consider current running programs 
accessing shared memory or I/O simultaneously as well as normal illegal memory accesses and 
commands. This interweaving of resources creates an uncertainty factor in protecting such a 
system. In order to get an accurate view of the multicore system, we first evaluate architectural 
features in the CBEA processor, and then examine hardware virtualization technology, one of the 
most important features in multicore architectures, especially in Intel Core i7 based on our 
IAVMM prototype. 

13.1 EVALUATION OF CBEA PROCESSOR ARCHITECTURES 
This section highlights some security concerns in the CBEA processor and possible solutions for 
some of them. Our group has provided a security review of the CBEA processor in a prior paper 
[SHAF10b]. In addition, we evaluated shared DRAM memory system mechanism in this 
architecture. 

13.1.1 A Security Review of the CBEA 
In this report, we focus on the Intel Nehalem architecture rather than the CBEA architecture; 
therefore we only list some major security concerns of the CBEA processor. Whatever the 
architecture brings, the memory system is always the most obvious target for attacks. For 
example, analyzing a potential covert channel in Multilevel Secure (MLS) systems is especially 
important, since covert channels are potentially uncontrolled data flows between process levels 
of security. In the architecture of a CBEA processor, each SPU contains a Local Store (LS) and 
128 registers in place of traditional L1 and L2 cache system. The following provides a more 
detailed description. 

 
The first issue posed is the security concern of the LS, a 256K cache-like memory assigned 

to each SPU. To allow programmers to manage concurrent data usage, the CBEA allows each 
SPU to access any other SPUs' LS through DMA read/write requests. While this greatly 
facilitates memory sharing, it makes keeping secure data on one SPU safe from other SPUs very 
difficult. For example, we can use one SPU (Eve) to read the communication between another 
SPU (Bob) and the PPU (Alice). Assume Messages, ‘str’, are passed between Bob and Alice 
using a shared memory location, which resides at a static memory range. Then Eve can calculate 
its own str address and add or subtract the offset to find Bob's str address. Once Eve gets this 
address, she can read or overwrite the messages between Alice and Bob. 

 
Second, the availability of the 128 registers to the programmer creates possible exploits as 

well. Of these registers, the first is a Link Register, the second a Stack Pointer, and the third an 
Environment Pointer. The first 80 Registers are for general use and are volatile, which means 
that they will be cleared as soon as the program terminates; registers numbered higher than 79 
are the general use nonvolatile registers, which means that the data in these registers are not 
deleted if the context is not destroyed. Since they are memory mapped and accessible in the same 
manner as the SPU's LS, all of these registers create several possible security concerns. For 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
150 

instance, we can perpetrate a DoS (Denial-of-Service) attack on any SPU by merely writing a 
random memory address over the Stack Pointer and thus cause the SPU to abort. Following on 
the heels of this DoS attack is a flow redirection attack in which we no longer write a random 
memory address to the Stack Pointer but instead insert a location that contains another, 
unauthorized command. This is very similar to the traditional buffer overflow or format string 
attack. The CBEA does not provide separate memory protection to prevent this type of attack. 
 

The open LS communication between SPUs prevents the development of the MLS system on 
the CBEA, and the DoS attack makes it impossible to guarantee the completion of a SPU 
program. Although the CBEA processor architecture provides some security features that can 
mitigate some of the aforementioned concerns, we do not believe that it is feasible to implement 
completely secure MLS systems. We identified several concerns that indicate the CBEA is not 
usable in a multi-level secure environment.  

13.1.2 Evaluation of Shared DRAM System in CBEA 
The arrival of multicore architectures creates significant challenges in the design of memory 
systems. In the CBEA, the DRAM memory system is shared among the threads concurrently 
executing on different processor cores. Due to the way current DRAM memory systems work, it 
is possible that a thread with a particular memory access pattern can occupy shared resources in 
the memory system, thereby preventing other threads from using those resources efficiently, 
which results in denial of memory service [MM07]. To explore this potential vulnerability, we 
evaluated the shared DRAM system to demonstrate whether such denial of memory service 
attacks exist in the DRAM system of the CBEA. 

 
The modern DRAM system is a three-dimensional memory structure with the dimensions of 

bank, row and column. Each bank (see Figure 44) consists of multiple rows and columns. 
Consecutive addresses in memory are allocated for the consecutive columns in the same row. 
Each bank has one row-buffer and data can only be read from this buffer. The row-buffer 
contains at most a single row at any given time. Due to the existence of the row-buffer, once a 
particular location in a memory row is accessed, the entire row of the memory array will be 
transferred into the corresponding bank's row buffer. The row buffer, now combined with a sense 
amplifier, serves as a cache to reduce the latency of subsequent accesses to the same row. 
However, sequential accesses to different rows in the same bank result in high latency. 
Therefore, the memory access scheduler, the brain of the memory controller that selects a 
memory request from the memory request buffer to be sent to DRAM memory, is designed to 
maximize the bandwidth obtained from the DRAM memory. The CBEA employs a row-hit-first 
algorithm to select which request should be scheduled next. The row-hit-first policy requires that 
accesses to the same row in a bank are scheduled before the accesses to a different row even if 
those were generated earlier in time. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
151 

 
In order to evaluate whether or not there exist potential DoS attacks in shared memory 

system according to Moscibroda and Mutlu's work [MM07], we built an experiment, in which all 
the SPEs issue DMA transfers to access the DRAM system concurrently, and record the 
execution time of each access. Figure 45 depicts the execution time of access to shared memory 
by each of the concurrently running cores. In the case of 2 cores, 4 cores and 6 cores, we found 
that DMA transfers take almost the same time for each core, which means that the row-hit-first 
scheduling algorithm does not degrade the performance of the system. Although the theoretical 
design of the CBEA has 8 SPE cores, there are actually only 6 active SPEs, with one SPE 
reserved for running the hypervisor and another one deactivated. Therefore, programs running on 
8 cores actually have to swap in and out of the cores. This explains the fluctuation wave of the 
execution time appears in the 8-core case. From the above analysis, we conclude that the 
experiments in CBEA don't validate the “unfair” description of the shared memory system posed 
by Moscibroda and Mutlu (see Section 13.1.2), and we will not be concerned with this issue in 
CBEA any further. 

 

 

 
Figure 45: Access execution time (μs) to shared memory when running multiple SPEs 

concurrently 

 

 
Figure 44: A DRAM Bank 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
152 

13.1.3 Discussion 
The CBEA processor is designed for fast and free flow of information, not for security and 
restricted access. Although the unfairness of the shared DRAM memory system does not work in 
CBEA, it is of little surprise that some other security concerns arise over the memory system for 
such a processor, such as potential exploits in local store and registers. As mentioned previously, 
the current implementations of the CBEA processor have been examined in detail in our prior 
work [SHAF10b], and the results could serve to guide future security development of similar 
processors. 

13.2 EVALUATION OF INTEL 64 HARDWARE FEATURES BASED ON 
IAVMM 

The current system virtualization architecture allows a hypervisor to run an OS as a guest in a 
VM while maintaining control of the physical resources (e.g., CPU, RAM and devices). Such 
architecture inherently gives the hypervisor a complete view of system resources. The current 
popular tool for monitoring and analysis is virtual machine introspection (VMI), proposed by 
Garfinkel and Rosenblum [GR03], the process of examining a process inside a virtual machine 
from its hypervisor. While other works have leveraged this idea for security purposes, such as 
malware detection [JWX10] and intrusion detection [PSE09], our work focuses on hardware 
supported monitoring for security analysis based on IAVMM platform. 

 
We evaluate Intel 64 architectural features based on our proof-of-concept IAVMM through 

simple security considerations, which include several aspects: systematic evaluation, instruction 
case studies and memory protection discussion. The extent of the system performance depends 
on how much the VMX extensions have been implemented in this platform. We built our 
experiments on a Intel-based hardware machine with a 2.80 GHz i7-860 processor that has Intel 
VT-x support and 4 GB of RAM. Without any support of system kernel APIs, IAVMM runs 
directly on the bare hardware, not requiring a host operating system, and the guest virtual 
machines lay directly above the hypervisor. 

13.2.1 Systematic Evaluation 

13.2.1.1 IAVMM for Security Analysis of Bare Metal 
From the perspective of the privilege rings model, VMMs can be classified into two types: Type 
I (running on the native hardware) and Type II (hosted). Robin and Irvine [RI00] concluded that 
it would be unwise to try to implement a high assurance VMM as a Type II VMM hosted on a 
generic commercial OS. Layering a highly secure VMM on top of an OS that does not meet 
reference monitor criteria would not provide a high level of security. A better approach would be 
to build a Type I VMM. Moreover, we need a hypervisor for security analysis of underlying Intel 
64 architectural features. These are the reasons that we built the IAVMM based on the bare-
metal architecture. 

 
There are two advantages of IAVMM. First, IAVMM can provide a high degree of isolation 

between guest VMs. Second, existing popular OSs and their applications can run in this 
environment without modification. A VMM eliminates the needs to port software to a special 
secure platform and supports the functionality of current application suites. However, the biggest 
disadvantage to a Type I VMM approach is that device drivers must be written for every device 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
153 

to ensure the virtualization. Although devices are not currently supported in IAVMM and it 
avoids this problem, we will consider it in the future, if necessary. 

13.2.1.2 Lightweight 
The system which we want is a simple and convenient hypervisor for security analysis. Initially, 
one of the reasons for this was purely practical. Implementing more code in the hypervisor leads 
to more bugs being added to the hypervisor, which often crashes the development machine and is 
also much more difficult to debug. Therefore, VMMs are considered more trustworthy than 
traditional OSs because of their smaller TCB (Trusting Computing Base). Compared with 
commodity hypervisors such as Xen and VMware, IAVMM is really a lightweight hypervisor as 
we expected. It is a simple and convenient system for security analysis of Intel 64 architecture. It 
does not provide full functionality of the commodity VMMs, but enough for our 
experimentation, and is extensible if we need more features.  
Table 50 summarizes the features of different VMMs. IAVMM only consists of 7K lines of code 
and thus is convenient for us or other researchers to understand and develop further, such as 
applying necessary security policies as we will. Our code base is 3 orders of magnitude smaller 
than commodity VMMs, such as Xen and VMWare ESX. TVMM and MAVMM are lightweight 
and Type I (bare metal) VMMs as well, but both of them only support the AMD architecture and 
need to boot in the AMD SimNow Simulator. MAVMM only supports booting 32-bit OSs and 
guest systems which may expect to start in real or legacy protected mode with paging off, 
whereas IAVMM is able to boot the host and the guest in 64-bit mode (long mode). TVMM does 
so but merely with a guest paging structure of 2 MB pages, and our system provides a page 
structure of either 2 MB or 4 KB pages. 
 

Table 50: Systematic Features of Various VMMs 
 Xen 3.4.1 VMWare ESX TVMM MAVMM IAVMM 
Code Size (Lines) 230K 200K 4K 9K 7K 
Hardware Platform Intel/AMD Intel/AMD AMD AMD Intel 
Operating Mode 32/64 bits 32/64 bits 64 bits 32 bits 64 bits 
VMM Type Type I Type II Type I Type I Type I 

 
The size of TCB (Trusted Computing Base) is an important factor to consider when 

evaluating a system's security. Our proof-of-concept IAVMM has a lightweight VMM kernel 
and makes it easier to avoid bugs, and to formally verify desired properties of the system. 

13.2.2 Instruction Case Studies 

13.2.2.1  Sensitive but Unprivileged Instructions 
Hardware virtualization requirements indicate that there must be a way to automatically signal 
the VMM when a VM attempts to execute a sensitive instruction36. Back in the late 1990s, Robin 
and Irvine [RI00] found 17 sensitive but unprivileged instructions falling into this category. 

                                                 
36 Sensitive instructions are those that change the configuration of the system, or whose behavior depends on the 

configuration. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
154 

Since that time, Intel has added over 500 new instructions through various language extensions. 
We examined these additional instructions and discovered 9 more instructions that don't meet 
that requirement (classical virtualization) as well, including MWAIT/MONITOR, 
XSAVE/XRSTOR, XSAVEOPT, RSM, XGETBV, and SYSCALL/SYSENTER. These 26 total 
sensitive but unprivileged instructions are listed in Appendix D. Fortunately, Intel VT-x provides 
VM exit mechanisms to handle most of these instructions, if the VMM designer so chooses. The 
experiments of all these instructions are built as follows: 

 
• MWAIT and MONITOR Instructions:  Whether instructions MONITOR and MWAIT are 

supported in this architecture or not depends on whether the MONITOR, CPUID feature 
flag (CPUID.01H:ECX.MONITOR[bit 3]) is set. Both instructions are used together to 
monitor a range of linear memory. The MONITOR instruction sets up an address range 
for the monitor hardware using an address specified in EAX (the address range that the 
monitoring hardware checks for store operations can be determined by using CPUID) and 
puts the monitor hardware in armed state. The execution of MWAIT is a hint to the 
processor that it can enter an implementation-dependent-optimized state while waiting for 
an event or a store operation to the address range armed by the preceding MONITOR 
instruction in program flow, halting most activity in the core while doing so. 

 
An interrupt will cause the processor to exit if ECX = 1 within MONITOR instruction, 

and then the execution will resume at the instruction following the MWAIT instruction. If 
the ECX within MWAIT is equal to 1, then triple fault will be thrown out. Most of VMMs 
don't have such an exception handler to process this triple fault and ignore these 
executions or stall the system, which means that the VMM doesn't execute these 
instructions as expected by the guest VM. Fortunately, Intel VT-x guarantees that the 
MWAIT instruction would cause a VM exit if the “MWAIT exiting” VM-execution 
control is set (see Figure 46). Once instructions MONITOR and MWAIT are invoked in a 
guest VM, the event causes a VM exit and then the VMM will determine how to handle 
these two sensitive but unprivileged instructions. We tested this and found that we could 
capture the instructions and corresponding triple fault without a problem. 

 
 

... 
guest CR0: 0x80040033, CR3: 0x800a000, and CR4: 0x2028 
launching guest for CPU 0x0 
 
-------------Guest VM in BSP: hello guys------------- 
Vmx_vmexit_handler, exit_reason=0x24 
MWAIT or MONITOR is called in Guest VM 
VM exit handling done,  
then stall here 
... 
 

Figure 46: IAVMM traces CR information while launching a mini_guest 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
155 

• SYSENTER and SYSEXIT Instructions: Companion instructions  SYSCALL/SYSRET 
and SYSENTER/SYSEXIT were independently created by AMD and Intel, respectively, 
but in essence do the same thing. SYSENTER executes a fast call to a level 0 system 
procedure or routine, and is a companion instruction to SYSEXIT, although they do not 
constitute a call/return pair. When executing a SYSENTER instruction, the processor does 
not save state information for the user code. Far calls to different privilege levels are 
problematic because they involve the CPL, DPL and RPL. If a far call is executed to a 
different privilege level, accessing the code segment for the procedure has to be through a 
call gate. A task uses a different stack for every privilege level. Therefore, when a far call 
is made to another privilege level, the processor switches to a stack corresponding to the 
new privilege level of the called procedure. Neither the SYSENTER and SYSEXIT 
instruction supports passing parameters on the stack. Executing these instructions has 
many privilege level checks that compare the CPL and RPL to DPLs. Since the guest 
software normally operates at user level (CPL 3), these checks will not work correctly 
when it tries to access guest OS at CPL 0. 
 

Given our experiments based on IAVMM, when the system is in VMX non-root 
operating mode, guest software is running at privilege level 3, but without a guest OS 
running concurrently. Therefore, using these instructions for transitions between guest 
software code and guest OS procedures in IAVMM will cause triple fault. In general, 
when both guest software and guest OS exist in a guest VM system, there may be a 
security hole. Certainly, SYSENTER can be called from anywhere in guest software code, 
and SYSEXIT is expected to return to where called. Since the user can forge a return 
address, which might be an address to a malware virus, the execution of SYSEXIT can 
cause unexpected results. Fortunately, in VT-x, modifications of this return address 
require to read and write IA32_SYSENTER_EIP and IA32_SYSENTER_ESP MSRs, but 
operations of MSRs ( i.e. RDMSR and WRMSR) in guest VM will cause a VM exit. 

 
• XGETBV Instruction:  The XGETBV instruction reads the contents of the extended 

control register (XCR) specified in the ECX register into registers EDX:EAX. This 
instruction provides convenience for reading system registers and should be documented 
as a crucial security feature, however, on the Core i7-860 processor, the high-order 32 
bits of RCX, RAX, and RDX are ignored. Currently, only XCR0 is supported, which is 
the XFEATURE_ENABLED_MASK  register. Thus, all other values of ECX are reserved 
and will cause a general exception. 
 

Once executing this instruction, IAVMM will produce a general exception trapped 
with invalid opcode (6) as shown in Table 51. 

 
• XSAVE, XRSTOR, XSAVEOPT, and RSM Instructions: The XSAVE instruction performs 

a full or partial save of enabled processor state components to a XSAVE save area, the 
memory address of which is specified in the destination operand. Both XSAVE/XRSTOR 
and XSAVEOPT are not supported on Intel i7-860 processor. The RSM returns program 
control from SMM to the application program or operating system procedure that was 
interrupted when the processor received an SMM interrupt. Since there are no XSAVE, 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
156 

XRSTOR, XSAVEOPT instructions on Intel Nehalem architecture and the guest VM 
system can't be switched to SMM mode, the experiments of all these instructions cannot 
be built in IAVMM. 

Table 51: Selective Exception Bitmap 

Vector 
No. 

Description Error 
Code 

Source 

0 Divide Error No DIV and IDIV instructions. 
2 NMI Interrupt No Nonmaskable external interrupt. 
3 Breakpoint No INT 3 instruction. 
4 Overflow No INTO instruction. 
5 BOUND Range Exceeded No BOUND instruction. 
6 Invalid Opcode (Undefined opcode) No UD2 instruction or reserved opcode. 
8 Double Fault Yes Any instruction that can generate an 

exception, an NMI, or an INTR. 
9 Coprocessor Segment 

Overrun 
No Floating-point instruction. 

10 Invalid TSS Yes Stack switch or TSS access. 
12 Stack Segment Fault Yes Stack operation and SS register loads. 
13 General Protection Yes Any memory reference and other 

protection checks. 
14 Page Fault Yes Any memory reference. 
17 Alignment Check Yes Any data reference in memory. 
18 Machine Check No Error codes (if any) and source are 

model dependent. 
 
• SGDT, SIDT, and SLDT Instructions: All three of these instructions, SGDT, SIDT, and 

SLDT, store a sensitive register value into some specific location, but they are not 
privileged in the Intel architecture. Since the Intel processor only has one LDTR, IDTR, 
and GDTR, a problem arises when multiple guest VMs try to use the same registers for 
their own operations. This means that VM2 can retrieve the contents of these registers in 
VM1. VT-x handles this problem by adding “descriptor-table exiting” bit in VM-
execution control to cause VM exit once one of these three instructions is invoked. The 
experiments demonstrate that when guest software attempted to execute SGDT, SIDT, 
and SLDT and the “descriptor-table exiting” VM-execution control was 1, a VM exit 
occurs. 

 
• STR Instruction: The STR instruction stores the segment selector from the task register 

into a general-purpose register or some memory location. If a VM runs at a run-time 
privilege level of 3 it can use this instruction to retrieve the contents of the STR, which 
may have been modified by the OS running at a higher level. Therefore, VT-x handles 
this problem in the same manner as the SGDT instruction, when “descriptor-table exiting” 
VM-execution control was 1, a VM exit occurs. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
157 

• LAR, LSL, VERR and VERW Instructions: The LAR instruction loads access rights byte 
from a segment descriptor into a general-purpose register and sets the ZF flag in the 
EFLAGS system register if the load operation is successful. The LSL instruction loads the 
unscrambled segment limit from the segment descriptor into a general-purpose register 
and sets the ZF flag in the EFLAGS system register if the load operation is successful. 
The VERR and VERW instructions verify whether a code or data segment is readable or 
writable from the current privilege level, respectively. The execution of any of these four 
instructions within a guest VM results in the modification of sensitive resource to lower 
privilege level when the VM runs at privilege level 3. The experiments demonstrate that 
the execution of all these four instructions do not cause VM exit and any exceptions. 

 
• PUSH and POP Instructions: The POP instruction loads the value from the top of the 

stack to the location specified with the destination operand, which may be a general-
purpose register, memory location, or segment register. The PUSH instruction has the 
opposite effect of the POP instruction. The experiments demonstrate that the execution of 
both instructions do not cause VM exits and any exceptions. 

 
• PUSHF and POPF Instructions: The PUSHF and POPF instructions reverse each 

other's operation. The PUSHFD and POPFD instructions are the 32-bit counterparts of the 
PUSHF and POPF instructions. Both of them are sensitive but unprivileged instructions, 
since the PUSHF instruction pushes the lower 16 bits of the RFLAGS register onto the 
stack, which allows modification of certain bits in the RFLAGS register that control the 
operating mode and state of the processor. Fortunately, Intel VT-x addresses this 
problem. A VM exit occurs at the beginning of executing either instruction if RFLAGS.IF 
is 1. 

 
• MOV to/from CR Instructions: The experiment demonstrates that moving the contents 

of a control register (CR0, CR2, CR3, CR4, or CR8) to a general-purpose register or the 
contents of a general purpose register to a control register can cause a VM exit, since 
loading and storing control registers are sensitive to the system state. The basic exit 
reason shows guest software attempted to access control registers. 

 
• CALL, JMP, and INT n Instructions: All three of these instructions attempt a task 

switch, which is not allowed in guest VM, according to VT-x. For example, the INT n 
instruction performs a call to the interrupt or exception handler specified by n. It pushes 
the RFLAGS register onto the stack before pushing the return address. The execution of 
this instruction in VT-x causes a VM exit if the “NMI exiting” is set. 

 
• RET Instruction: The RET instruction transfers program control to a return address that 

is placed on the stack, whereas the IRET instruction returns control from an exception, 
interrupt handler, or nested task. If “NMI exiting” is set, once such an instruction is 
executed, a VM exit occurs. 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
158 

From the aforementioned experiments, Intel VT-x provides mechanisms to handle most of 
these 26 sensitive but unprivileged instructions smoothly, the execution of which cause VM exits 
if corresponding settings are satisfied. However, there still are 6 instructions LAR, LSL, VERR, 
VERW, PUSH and POP, which do not generate VM exits and remain sensitive. 

13.2.2.2 Undefined Instruction 

The UD2 instruction generates an invalid opcode, which is provided for software testing to 
explicitly generate an invalid opcode. Other than raising such an invalid opcode exception, this 
instruction is the same as the NOP instruction. 

 
In IAVMM, we created a VM exit handler, which handles exceptions occurring from a guest 

VM. Therefore, once a UD2 instruction is executed, an exception (GPe) will be reported and the 
handler will deal with the exit. However, there is no exception handler implemented in VMM 
level37. Thus, all of the processors will be halted, including the other running processors 
concurrently. If we create exception handler for this on the VMM level, this exception can be 
caught and then system can transfer the control back to the caller program flow. 

13.2.2.3 Bitmap 
To support VMM flexibility, the VMCS adds bitmaps that allow VMM conditions' selectivity 
regarding to most VM exits. The following items detail three of these: 

 
• Exception Bitmap: This bitmap is a 32-bit field that indicates one bit for one entry for the 

x86 exceptions. It allows a VMM to specify which exceptions should cause VM exits and 
which should not. 

• I/O Bitmap: This bitmap contains one entry for each port in the 16-bit I/O space. An I/O 
instruction causes a VM exit if it attempts to access a port whose entry is set in the I/O 
bitmaps. 

• MSR Bitmap: This bitmap contains two entries (one for read, one for write) for each MSR 
currently in use. The execution of RDMSR/WRMSR will cause a VM exit if it attempts to 
read/write an MSR, whose read/write bit is set in the MSR bitmap. 

 
Take the exception bitmap for an instance, if an exception occurs,  its vector indicates 

whether the corresponding bit in the exception bitmap is set. If this bit is set, a VM exit is 
triggered; otherwise, the exception is delivered through the guest IDT. See Table 51 for details. 
The Error Code column indicates whether an error code is saved when the exception occurs. 

 
Page faults (exceptions with vector 14) are a little bit different. When a page fault occurs, 

whether it causes a VM exit or not is determined not only by bit 14 in exception bitmap, but also 
by the error code PFEC produced with the page fault and two 32-bit fields in the VMCS (the 
page-fault error-code mask field PFEC_MASK and page-fault error-code match field 
PFEC_MATCH). If PFEC & PFEC_MASK = PFEC_MATCH, the specification of bit 14 in the 
exception bitmap is followed; that is, a VM exit occurs if that bit is set. If not, the meaning of 

                                                 
37 Because this platform is for research experimentations, and doesn't provide full functionality of commodity 

hypervisors. However, exception handler for guest VM is implemented. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
159 

that bit is reserved; that is, a VM exit occurs even if that bit is clear. Thus, if the design requires 
VM exits on all page faults, software need to set the bit 14 in the exception bitmap and set the 
PFEC_MASK and the PFEC_MATCH each to 00000000H, which is exactly what IAVMM 
does. If page faults are not required, software just needs to set PFEC_MATCH to FFFFFFFFH. 

13.2.3 Covert Channels Analysis 
A covert channel is a method of passing messages in an unanticipated or unintended manner 
[U.S93], thus could allow a potentially uncontrolled data flow among different cores in a 
multicore system. There are certainly various unexplored covert channels hiding in multicore 
architectures, and it is important to be aware of their existence. According to US Department of 
Defense Policy [U.S93], in secure systems, indirect, covert information flows should be 
identified, measured and monitored at run-time. Moving on from this issue, we have begun to 
explore different potential covert channels given Intel's current implementations. Our goal is to 
evaluate and document these and provide guidance for developers on possible software work 
around. The following lists two examples of these types of issues: Processor Caches and 
Registers. 

 
• Processor Caches: For processors supporting Intel Hyper-Threading Technology, the 

processor caches are shared among logical processors in one physical core. Any cache 
manipulation instruction that is executed on one logical processor has a global effect on 
the cache hierarchy of the physical processor. 
 

Each logical processor has its own control register CR0, and thus its own CD (Cache 
Disabled) flag in CR0. The CD flags for the two logical processors are ORed together, 
such that when any logical processor sets its CD flag, the entire cache is nominally 
disabled, thereby degrading the performance. This degradation can easily form the basis 
for a covert channel. 

 
Several instructions, including WBINVD, INVD, and CLFLUSH instructions, might 

invalidate the entire cache hierarchy of two logical processors. For example, by using 
WBINVD instruction, the system invalidates the entire cache hierarchy after modified 
data is written back to memory. All logical processors are stopped from executing until 
after the write-back and invalidate operation is completed. As a consequence, the use of 
the WBINVD instruction can have an impact on interrupt/event response time. 

 
• Registers: In this section we explore several registers that might impact resource 

isolation, such as loading a task register and MOV_DR. 
 

The processor state information, which is used for restoring a task, is stored in a 
system segment called task-state segment (TSS). The TSS is defined by a segment 
descriptor that may only be placed in the GDT. The busy (B) flag in the field type of a 
TSS descriptor indicates whether the task is currently running or suspended; the type 
field with a value of 0x9 (1001B) indicates an inactive task and a value of 0xb (1011B) 
indicates a busy task. To insure that there is only one busy flag associated with a task, 
each TSS should have only one TSS descriptor that points to it. In most systems, the 
DPL (Descriptor Privilege Level) fields of TSS descriptors are set with privilege level 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
160 

value less than 3, so that only privileged software can perform task switching. In 
IAVMM, we build one VMCS for each guest VM in a single core, where we need to 
load task register. After loading a non-zero host TR for one VMCS to mark it busy, we 
must clear the busy flag to avoid blocking other APs to construct their own VMCSs. 
Otherwise other APs can’t load their task register successfully 

 
MOV_DR indicates that the caller accesses a debug register which is used by a 

processor for program debugging. There are eight debug registers totally, DR0-DR7, with 
DR4 and DR5 obsolete synonyms for DR6 and DR7. These debug registers allow 
programmers to selectively enable various debug conditions and hold the addresses of 
memory and I/O locations called breakpoints. A set of four debug addresses are specified 
in DR0-DR3 as breakpoint locations, and conditions can be defined in debug control 
register DR7. They are set to the memory address where a programmer or system 
designer wishes to halt execution of a program and examine the state of the processor by 
invoking debugger software. However, one vulnerability behind this instruction is that it 
does not check guest CPL (Current Privileged Level) before VM Exit; that is, we can set 
the debug registers without a privilege level 0 when we are in VM mode. This can easily 
be used for DoS attack because we can just make the guest kernel double fault. 
Therefore, when some breakpoints in DR0-DR3 are set, once a debug exception is 
generated, the execution of instructions would be stalled no matter what privilege level 
programs are running at. We have not found a software workaround for this problem yet. 

13.2.4 Memory Access Discussion 

13.2.4.1 Guest OS trying to access host region 
In this test suite, we demonstrate the memory protection mechanism on IAVMM, which prevents 
guest software from accessing the host memory region. When we build the EPT for IAVMM, the 
VMM region is hidden by skipping the VMM region within the EPT memory mapping from the 
perspective of the guest. Therefore, under this protection mechanism, guest software is 
prohibited from affecting or modifying the execution of the VMM. 

 
One test case is designed for guest software to access a VMM region, comparing with the 

other test case for guest software to access its corresponding guest region. The experiment is 
implemented as follows. First, move guest OS procedure into low memory (2 MB) which must 
be within the guest memory region. This is because our executable code is initially stored in the 
high memory (128 MB) which is not a designated guest memory area, we need to move that code 
to the guest space where it is supposed to be. Second, issue a JMP or CALL instruction from 
guest executable code to access a function belonging to the VMM region. Two kinds of memory 
accesses are demonstrated for a comparison: 1) guest software writes a message to VMM region 
and 2) guest software writes a message to guest region. Third, provide a VM exit handler to 
handle the VM exit from the guest to see whether any exception happens. 

 
The result of this experiment demonstrates that guest software can only access the guest 

region but can't access the VMM region. This is no surprise because of the appropriate EPT 
configuration illustrated in Section 12.3.2. Once the access is violated, an exception is caught by 
the VM exit handler. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
161 

13.2.4.2 Interference between VMMs 
In order to guarantee isolation, a program running inside a VMM_A must not interact with 
another program in VMM_B on the same machine. If a program on VMM_A is able to change 
memory or monitor VMM_B, then this is considered a serious isolation break. Section 13.2.4.1 
demonstrated that guest software with low privilege level (Ring 3) cannot access to the host 
VMM with high privilege level (Ring 0), which conforms to the Bell-LaPadula (BLP) “No read 
up” security policy. One more question comes out, what if they are with the same privilege 
level? Are programs running on one VMM able to affect other VMMs running in the same 
privilege level? If such a potential security bug is exploited, an attacker can have access to all 
VMMs. That is why the memory management must be carefully configured and maintained. 

 
We proposed a software mechanism (protection page table) for isolation to control the 

interference among all the VMMs. More details will be illustrated in Section 14.4 and Section 
14.5.2. 

13.2.5  System Registers Analysis 
To assist in initializing the processor and controlling system operations, the system architecture 
provides system flags in the RFLAGS register and several system registers: 

 
• The system flags and IOPL fields in the RFLAGS register control task and mode 

switching; interrupt handling, instruction tracing, and access rights. 
• The control registers (CR0, CR2, CR3, CR4, and CR838) contain a variety of flags and 

data fields for controlling system-level operations. 
• The debug registers allow the setting of breakpoints for use in debugging programs and 

system software. 
• The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes of their 

respective tables. 
• The task register contains the linear address and size of the TSS for the current task. 
• The Model-Specific Registers (MSRs) control items such as the debug extensions, the 

performance-monitoring counters, the machine-check architecture, and the memory type 
range registers (MTRRs). 

 
IAVMM has the ability to extract system information and take snapshots so that a user can 

keep logs of a specific state for further analysis. Therefore, our VMM offers good transparency 
including presenting host and guest state information about Control Registers, MSRs, and so on. 
The following subsections describe some of these registers and demonstrate how they are 
implemented in our prototype. 

13.2.5.1 Control Registers 
Control registers determine the operating mode of the processor and the characteristics of the 
currently executing task. In 64-bit mode, control registers are expanded to 64 bits. CR0 contains 
system control flags that control operating mode and states of the processor. CR3 contains the 

                                                 
38 CR8 is available in 64-bit mode only, known as task priority register. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
162 

physical address of the base of the paging-structure hierarchy (e.g. the base address of the PML4 
table), and two flags (PCD and PWT) which control caching of that paging structure in the 
processor's internal data caches. CR4 contains a group of flags that enable several architectural 
extensions, and indicate operating system or executive support for specific processor capabilities. 
Figure 46 depicts a picture of control registers in guest VM when a mini_guest VM is launched. 
According to Figure 47, the system enables paging (CR0.PG and CR0.PE) in guest VM. Since 
both the CR0.CD and CR0.NW flags are clear, caching of memory locations of the whole of 
physical memory in the processor's internal caches is enabled. IAVMM clears CR4.PSE flag to 
enable 2-MByte or 4-KByte pages without 4-MByte pages. CR4.PAE flag must be set to enable 
paging to produce physical addresses with more than 32 bits before entering IA-32e mode. Our 
system enables VMX operation in guest VM so the CR4.VMXE should be set. 

 

13.2.6 VM Exits 
VM exits occur in response to certain instructions and events (see Section 12.6) in VMX non-
root operation. IAVMM provides VM Exit handler to deal with most of the VM exits. For 
example, Figure 46 shows a case that IAVMM captures VM exit information when a mini_guest 
VM is launched. In that case, “MWAIT exiting” is set in VM-Execution control fields during 
constructing VMCS. As the output shows, a VM exit occurs with a basic exit reason 0x24 when 
the instruction VMLAUNCH is executed to launch the guest virtual machine. Exit reason 0x024 
indicates that an MWAIT instruction arrived and the “MWAIT exiting” VM-execution control 
was set. 

 
In addition, IAVMM sets up the guest to cause a VM exit to the VMM on external interrupts. 

This is done by setting the “external-interrupt exiting” VM-execution control in the guest 
controlling-VMCS. Interrupts are automatically masked by hardware in the processor on VM 
exit by clearing RFLAGS.IF. 

 
 

 
Figure 47: The formats of CR0 and CR4 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
163 

13.3 SUMMARY 
Multicore processor architectures have been designed to provide efficient performance, but they 
introduce new security concerns, including shared memory issues, registers issues and so on. 
Virtualization brings a more complex and risky security environment. Most of security issues as 
well as VM escapes and VMBR have been discussed in section 10.4.2. One of our main goals is 
to evaluate hardware features in multicore processors, especially in the CBEA processor and 
Intel Core i7 processors, and then demonstrate how they have an impact on these multicore 
systems. 

 
Through IAVMM, we are able to get a vision of processor information and system states, 

hence building a fundamental block to determine if there exist possible vulnerabilities in VM 
systems. To illustrate this, 26 sensitive but unprivileged instructions are all evaluated and the 
results show that most of them39 are handled securely by the configuration of VMCS. Covert 
channels in multicore system are analyzed as well. The experiments about interference between 
multiple VM systems demonstrate that unauthorized subjects can be prevented from accessing 
protected resources, if the EPT is configured appropriately. 

                                                 
39 Six of these instructions are not handled successfully in hardware for VM Exits. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
164 

 A LAYERED FRAMEWORK FOR SECURE MULTICORE 14
ARCHITECTURES 
 
Assurance of multicore systems requires examination of all the hardware or software, to ensure 
that there are no accidental or malicious mechanisms that could allow malicious users or 
processes to reach the trusted region. Due to a wide variety of malicious behaviors, assurance 
would most likely have to specify exactly what each element of hardware and software is 
intended to perform, and to provide evidence that it does it correctly. Ideally we wish to specify a 
security framework for multicore architectures with any number of levels and components. 
However, for research convenience, we restrict ourselves to a 3-level system in this report. In 
this chapter, we analyze multicore architectures by examining each component from hardware 
level, up through hypervisor level until user level. 

 
The remainder of this chapter is organized as follows: Section 14.1 gives some terms 

specifically used in this report. Section 14.2 introduces 3-level framework for secure multicore 
architectures. The following sections present the evaluation of each component within this 
framework. Section 14.6 is the summary of this chapter. 

14.1 SECURITY POLICY TERMINOLOGY 
The following are basic terms and concepts used in security policy research that are relevant to 
this project. 

 
• Security Policy: A security policy describes the security requirements for a system. 

Security requirements are specific to a system and provide protection of essential services 
or resources. 

• Security Mechanism: A security mechanism is a way of implementing security policies. 
• Security Model: A security Model is a way of formalizing security policies. 
• Subject: A subject is an entity in the computer system that performs operations. 
• Object: An object is an entity in the computer system that is affected by the operations 

performed by subjects. An object may also be a subject. 
• Classification Levels: Sensitive information is classified into different levels for which 

access is restricted by law or regulation to particular classes of people. A security 
clearance is required to handle classified documents or access classified data. There are 
typically several levels of sensitivity, with differing clearance requirements. This sort of 
hierarchical system of secrecy is used by virtually every national government40. For 
purposes of this report, the classification levels, as well as clearance levels, from the 
highest to the lowest are Top Secret (TS), Secret (S), Confidential (C), and Unclassified 
(U). 

• Access Right: An access right is the permission for a subject to access a particular object 
for a specific type of operation. A typical set of operations are r,w,a,e, where r represents 

                                                 
40 Although we use military style levels, this can be mapped to other hierarchies as well. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
165 

that a subject can “read” an object, w represents that a subject can “write” and “read” an 
object, a represents that a subject can “write” (not “read”) an object, e represents that a 
subject can “execute” an object. 

• Confidentiality: Confidentiality refers to limiting information access and disclosure to 
authorized users – “the right people” – and preventing access by or disclosure to 
unauthorized users – “the wrong people”. Breaches of Confidentiality can occur when 
data is not handled in a manner adequate to safeguard the confidentiality of the 
information concerned. In the literature, confidentiality is sometime referred to as secrecy 
or privacy. 

• Integrity: Integrity refers to the trustworthiness of information resources. It includes the 
concept of “data integrity”, namely, that data has not been changed inappropriately, 
whether by accident or through deliberately malign activity. It also includes “origin” or 
“source integrity”, that is, the data actually came from an identified person or entity 
rather than an imposter. 

• Availability: Availability refers to the availability of information resources. It is the 
assurance that the systems responsible for delivering, storing and processing information 
are accessible when needed. An information system that is not available when needed is 
at least as bad as none at all. It may be much worse, depending on how reliant the 
organization has become on a functioning computer and communications infrastructure. 

• Covert Channel: A covert channel is a method of establishing illicit communication 
between subjects. Covert channels are realized through the use of either system variables 
as storage channels or forcing changes in the performance or response time of objects as 
timing channels. 

• Reference Monitor: A reference monitor is a model of the portion of the computer 
system that checks all operations performed by a subject on an object to determine 
whether or not the operation is permitted by the security policy. The implementation of 
this monitor should be small enough to be verified, tamper-proof, unavoidable, and 
should check each operation performed. 

14.2 3-LEVEL SECURITY FRAMEWORK 
We analyze multicore architectures by examining each component at the hardware level, 
hypervisor level and user level. The conceptual framework of a 3-Level security policy 
architecture is depicted in Figure 48 and will be illustrated based on our IAVMM, which is 
developed for security analysis of Intel 64 architectural features. To be specific, we discuss this 
framework with 3 subsequent stages: 
 

• Identify and examine multicore hardware architectural features; 
• Decompose security policy in IAVMM level into pieces of components that can be 

mapped into hardware level; 
• Verify that VMM- and Hardware- level security policy satisfies user-level security 

requirements. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
166 

 
We demonstrate an application system (see Figure 48) to illustrate how to accomplish these 

steps. The system is simple enough to avoid complexity for the purposes of discussion but 
sufficient to illustrate the concepts of our approach. Informally, it is a boxes-and-arrows diagram 
in which we want no channels for information flow other than those explicitly indicated by 
arrows. We present this architecture through the analysis of a two-partition system with an 
assumption that each partition system only contains one virtual machine system (VMS). For 
example, two generic secure building blocks, MMR and GC, are introduced in the VMM level to 
enforce security policies. MMR (Message Management Router) performs the partition 
identification, message labeling and routing of typed messages. The GC (Guard Controller) 
provides a guard for checking authorized message behavior. Specifically, MMR encodes 
messages with security levels, and GC enforces security policies. 

 
The specifications of this system are (Figure 49(a)): two single-level users, one with top 

secret and the other one with secret41, communicating with a multi-level database (DB). The 
database implementation is simple and assumes that messages from the users are tagged 
correctly with the correct security level. 

 

                                                 
41 In the Bell-LaPadula model of military-style classification, Four security levels are arranged from the most 

sensitive Top Secret, Secret, Confidential to the least sensitive Unclassified. 

 
Figure 49: Assurance architecture of the multicore system 

 

 
Figure 48: 3-Level Security Policy Framework for Multicore Architectures 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
167 

Assuming a Bell-LaPadula Model, which consists of the simple security property (no “read 
up”) and the *-property (no “write down”), is applied at the user level, we need to make sure that 
the messages are labeled correctly so that the system will not violate the security property. The 
system designer can design an application level security system (Figure 49(b)) where messages 
from the users are sent through the MMR which first sends the messages to the GC which 
ensures that the messages are tagged correctly and then sends them to the DB. The MMR routes 
return messages to the correct users. 

 
The system designer can take this implementation, place each component, the DB, MMR and 

GC into separate virtual machines and support the whole system on a multicore platform. The 
next step of our validation of this system then involves decomposing and mapping the high level 
policy (with knowledge of Secret and Top Secret users), into the VMM and eventually the 
hardware level of multicore architectures. To be specific, we analyze this mechanism based on 
memory paging system. 

 
Moreover, even if there is an attempt to compromise the system, the policy architecture 

should be responsible for taking appropriate actions. It is possible that, with the exemplary 3-
level security policy framework designed specifically for this implementation of Intel Core i7 
processors, we could provide software solutions or safeguards for some of the security concerns 
found in this research. The results of our work could serve to guide future security development 
for the Intel Core i7 processors. 

14.3 EXAMINATION OF HARDWARE-LEVEL SECURITY MECHANISMS 
With recent advances in hardware virtualization support, hardware control mechanisms have the 
advantage of being self-constrained and have a smaller attack surface, thus reducing the chance 
of subversion. Consequently, we want to discuss the opportunity to consider how these 
mechanisms can increase the overall trustworthiness of virtualized systems. As for security 
mechanisms to be enforced yet in hardware level, we examine them, but are actually not limited 
to, from the categories below. 

14.3.1 Secure Hardware Mechanisms of Intel VT-x 
There are already many corresponding mechanisms enforced at the hardware level to provide 
protection according to security requirements. 

 
• Protection Rings: The Virtual Machine Extension (VMX) in Intel VT-x is a new 

hardware enhancement introduced to support virtualization, where the privileged mode is 
labeled VMX root mode and the unprivileged mode is called VMX non-root mode. This 
VMX non-root mode can be regarded as a new mode of operation with reduced 
privileges. Both modes support all four rings, allowing the hypervisor to be able to use 
multiple privilege levels on its own and the guest OS can be allowed to execute at its 
intended ring level. 

 
• Instructions: Before the advent of hardware virtualization extensions for Intel 

virtualization, 17 sensitive but unprivileged instructions violated the classical 
virtualization requirements presented in [PG74, RI00]. Currently with the support of Intel 
VT-x, these virtualization problems can be handled by the VMM. Since that time, Intel 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
168 

has added over 500 new instructions through various language extensions. We examined 
these additional instructions and discovered 9 more instructions that also fall into this 
category, including MWAIT/MONITOR, XSAVE/XRSTOR, XSAVEOPT, RSM, XGETBV, 
and SYSCALL/SYSENTER. These 26 sensitive but unprivileged instructions are listed in 
Appendix D. For example, the POPF instruction, one of sensitive and unprivileged 
instructions, pops a word from the top of the stack and stores the value in the lower 16 
bits of the EFLAGS register, hence allowing values in the EFLAGS register to be 
changed that could impact the performance of another VM, thus violating classic 
virtualization concepts. Fortunately, Intel VT-x provides VM exits mechanisms to handle 
most of these instructions, if the VMM designer so chooses. 
 

The behaviors of some instructions are changed in VMX non-root operation, since the 
way to execute these instructions is determined by the settings of certain VM-Execution 
control fields. For example, the execution of CPUID instruction in root operating mode 
retrieves the information of the processors, however, the execution of it in non-root 
operating mode causes a VM exit. 

 
• Memory Virtualization: Memory Virtualization allows the VMM to enforce control of 

physical memory and yet support guest OSs' expectation to manage memory address 
translation. Intel VT-x includes two mechanisms for memory virtualization: Virtual 
Processor Identifier (VPID) and Extended Page Table (EPT). CPU caches memory 
translation information in the TLB, which is associated with a VM specific tag, VPID. 
This allows the TLB to keep track of which TLB entry belongs to which VM and the 
TLB entries of the different VMs can coexist peacefully in the TLB provided the TLB is 
big enough. When a logical processor performs a TLB invalidation operation, only the 
TLB entries that are tagged for that logical processor are guaranteed to be flushed. As a 
result, guest software can be allowed to handle its own page faults, thereby reducing the 
frequency of VM exits which avoids costly virtualization overhead. 

 
Rather than have the VMM manage the shadow page table's mapping, Intel's EPT 

adds a separate set of hardware-walked page tables which translate from guest physical 
addresses to host physical addresses that are used to access memory, which reduces 
context switches frequency within the guest thus alleviating hypervisor overheads. 

 
• Secure Hypervisor: Establishing a secure hypervisor is essential and each VM will 

always behave in the expected manner and contain a minimum set of functions enabling a 
description of the platform characteristics. Intel Trusted Execution Technology (Intel 
TXT) provides hardware-based security technologies to build a solid foundation for 
security. Built into Intel's silicon, these technologies address the increasing and evolving 
security threats across physical and virtual infrastructure by complementing runtime 
protections such as anti-virus software. Intel TXT creates a Measured Launch 
Environment (MLE) that enables an accurate comparison of all the critical elements of 
the launch environment against a known good source. It creates a cryptographically 
unique identifier for each approved launch-enabled component, and then provides 
hardware-based enforcement mechanisms to block the launch of code that does not match 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
169 

approved code. This solution can protect against the software-based attacks that threaten 
integrity, confidentiality, reliability and availability of systems. 

 
• Secure I/O: Intel VT-d adds an IOMMU to not only allow device memory addresses in 

DMA to be mapped to physical memory addresses automatically, but also provide a kind 
of memory protection. Without an IOMMU, a device can perform DMA to physical 
addresses that it should not be able to touch; with the IOMMU, such DMA requests can 
be blocked. The IOMMU can be configured such that a request from a particular device 
<bus #, device #, function # > can only have access to particular memory ranges, with 
any accesses outside those ranges being trapped as an error. 

 
Based on the aforementioned analysis, Intel virtualization technology does provide hardware 

support features for security. As a result, systems that require a higher amount of security and 
assurance have traditionally turned to hardware-enforced security to gain an additional level of 
protection should the measures in the OS fail, such as recent Intel TXT and TPM functionality 
incorporated into commodity PCs. However, more and more covert channels are introduced with 
the Intel VT-x, i.e. the misconfiguration of Task Register would cause unexpected results. 
Highly secure systems may also require protection at VMM level to secure VM systems in 
multicore architecture. 

14.4 VMM-LEVEL SECURITY MECHANISMS 
This section presents the use of a protection page table to guarantee that the state of one VM 
system cannot affect other VM systems. 

 
Even though Intel virtualization technology with hardware extensions only provides a coarse 

grained isolation scheme, IAVMM builds and implements a protection page table so that only 
subjects with authorized permissions can access a specific range of memory. Otherwise, the CPU 
will generate an exception on every attempt to access with unauthorized permissions. Once the 
hypervisor receives such an exception, it will stall the kernel if no exception handler deals with 
that exception. Table 52 presents access permissions in different VMX operation modes, wherein 
R, W and X stand for read, write, and execute permission, respectively. From the table, we 
configure the pages of VMM memory with either writable (W) or executable (X) in VMX root 
operation, but never both. This type of memory protection is generally referred to as W ⊕ X 
protection (exclusive or). VMM code is marked read-only for VMX non-root operation in the 
protection page table. This mechanism prevents any code executing in guest mode from 
modifying VMM code pages, thereby enhancing system robustness. 

 
Table 52: Protection page table enforced on IAVMM 

 VM Memory VMM Data VMM Code 
VMX Non-root Operation RWX W - 
VMX Root Operation RWX RW RX 

 
 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
170 

Under this protection table scheme, the state of one VM system cannot be affected by the 
execution of other VM systems. In the case of two VM systems as implemented in IAVMM, by 
combining protection page table with the EPT built for resource isolation in Figure 40, we built 
an experiment to demonstrate whether VMM2 can access VMM1 successfully, discussed in 
Section 14.5.2. 

14.5 VERIFICATION EXPERIMENTS FROM USER-LEVEL SECURITY 
MECHANISMS 

This section lists the experiments used to verify if the IAVMM policy satisfies the user level 
security requirement in this IAVMM prototype. We will discuss two broad categories of the 
models of confidentiality: access control security and information flow security. 

14.5.1 Access Control Security 
Access control means that a guard controls whether a principal (the subject) is allowed access to 
a resource (the object). Suppose that we want to enforce policies of this kind in the multicore 
architecture. A typical example is the Bell-LaPadula (BLP) model. Two security rules should be 
imposed in the multicore architectures. First, VMM is allowed a read access to the data with a 
lower or equal security classification, such as resources in guest software. Second, Guest OS is 
allowed a write access to the data with an equal or higher security classification. The verification 
experiments are built in Section 13.2.2. Because of the appropriate configuration of EPT, the 
system can prevent guest software from accessing the host memory region. 

14.5.2 Protection Page Tables 
Combining protection page table with the EPT built for resource isolation in Figure 40, we built 
an experiment to demonstrate whether VMM2 can access VMM1 successfully. Whether the 
access is permitted by a translation or not is determined by access rights specified by those 
paging-structure entries which control the translations. The mechanism of access rights is 
performed with the following steps. In the host page tables for an application processor (e.g. an 
AP with APIC_ID  #2), we disable write right by clearing the access flag R/W of each page-
directory entry that maps a 2 MB page, hence protecting that region against writing. From the 
perspective of VMM2 as shown in Figure 40, we clear the access flag R/W in every paging-
structure entry within the GVM1 and VMM1 region. In this way, the experiment result shows 
that the VMM2 can't access to the region of the VMM1. It will cause page-fault exception which 
makes VMM2 stall, and causes VMM1 to invoke a VM exit with exit reason 3, indicating that an 
init signal arrived. 

 
However, another issue is uncovered with this experiment. A processor may cache 

information from the paging-structure entries in TLBs and paging-structure caches, and the 
processor may enforce access rights based on the TLBs and paging-structure caches instead of 
the paging structures in memory. If software modifies a paging-structure entry to change access 
rights, it must update the TLB to ensure that the processor uses the new change for a subsequent 
access to an affected linear address. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
171 

14.6 SUMMARY 
In this chapter, we presented research results we have achieved based on the analysis of 
exemplary 3-level security framework for multicore architectures. Multicore processor 
architectures have been designed to provide efficient virtualization, but in the meantime they also 
introduce some security concerns. Two contributions in this chapter are to propose a layered 
framework to securely evaluate multicore architectures and to demonstrate how it has an impact 
on multicore systems involving verifications of hardware-level mechanisms, hypervisor-level 
and user-level mechanisms. The next chapter will present a way to enforce security policies for 
this framework. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
172 

 FORMALIZE SECURITY POLICY FOR MULTICORE 15
ARCHITECTURES 

 
The design of a secure system requires architects to develop a system architecture that supports 
implementation of various security policies. Enforcing security policies at the architecture level 
is attractive because it allows security concerns to be recognized early and can be given 
sufficient attention in the design stages. A security policy, determined by regulation and doctrine, 
defines “secure” for a system. The term “security policy for multicore architectures” covers 
security requirements that protect multicore systems from any unauthorized behaviors. In short, 
to develop a secure multicore system, it is necessary to enforce a security policy framework as 
simple and as strong as possible to provide general guidance for secure system on multicore 
architectures. In this chapter, we introduce a layered assurance scheme for multicore 
architectures and illustrate (using 3 layers) how to formalize the framework. This chapter is an 
extension of work published earlier [AFHS11]. 

 
The remainder of this chapter is organized as follows: Section 15.1 gives a brief literature 

review of security properties. Section 15.2 introduces a formal model of virtual machine systems 
and brings out a security requirement for multicore architectures, followed by some example 
layered assurance. Section 15.3 is the summary of this chapter. 

15.1 BACKGROUND 
Virtualization technology for commodity processors has entered the hardware extensions era. 
Multicore architectures with hardware-assisted virtualization technology have become a 
prevalent platform for building virtual machine systems. One key characteristic of virtualization 
technology is isolation. The main principle of isolation is to guarantee that any application in one 
VM cannot affect other applications executing in a different VM, or that processes running in 
one VM cannot affect other VMs running in the same machine. If this security assumption is 
broken, then an attacker can have access to VMs in the same machine or even to the host system. 
In light of these considerations, a reasonable question is “how to protect VMs?” To protect 
against this potential vulnerability in high-assurance systems, there are two main steps that must 
be completed. The first is to obtain a thorough understanding of the desired security properties of 
a multicore system. This normally calls for a formal model of the system together with security 
proofs, often given in some mathematical or logical language. The second is to provide assurance 
that the implementation of a multicore system realizes the more abstract formal model. The 
research community has spent considerable effort on the first area, such as some work on 
security architecture modeling and on providing security architecture design guidance for 
architects [MQRG97, ZAF08, BDRS08]. However, there is still a lack of additional detailed 
guidance for multicore systems from the perspective of hardware level.  

15.1.1 Layer Assurance Architectures 
Computer security is concerned with system architectures that can allow unauthorized software 
to access sensitive information. A wide variety of layered assurance designs and verification for 
security architectures have evolved at the same time as both of them have a strong influence on 
each other. Most treatments of MILS [AFOTH06, WU05] have focused on a three-layer 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
173 

approach comprised of separation kernel, middleware, and applications, whereas Boettcher 
[BDRS08] and others characterize MILS by a two-level approach (policy level and resource 
sharing level) to secure information sharing. The policy level decomposes functional and 
security objectives for the system to yield a MILS policy architecture in which all security-
critical functions are performed by trusted components. The trusted components enforce local 
security policies that work together to achieve the security policy of the overall system. Recently, 
University of Cambridge Computer Laboratory and SRI International's Computer Science 
Laboratory have been working on a hardware-software co-design approach [NW10] in which 
assurance is synergistic with the system architecture. This approach can be provided from the 
hardware up through the lower-layer software, in such a way that desired system security policy 
can be enforced architecturally to support a wide variety of software operations. This approach 
augments a current programmable hardware, Field Programmable Gate Array (FPGA) soft core, 
with new Capability Hardware Enhanced RISC Instructions (CHERI) features, which are 
designed to allow incremental adoption of higher-assurance approaches, with a focus on 
security-critical components making up contemporary TCBs: the separation kernel / hypervisor, 
OS kernel, and language runtimes. High assurance design may be supported at each layer in the 
system. 

15.1.2 Security Architecture Models 
We explore security architecture models by first defining the term security property. A security 
property is an instantiation of a security policy. There may be more than one property that 
satisfies a given policy. This section introduces a variety of security properties. A security 
framework generally assumes that there are at least two levels of users within a system, low-level 
(L) and high-level (H)42 The intuitive notion is that high-level users should be protected from 
low-level users, and information should not flow from high-level users to low-level users. The 
purpose of a security property is to prevent low-level users from being able to make deductions 
about the events of the high-level users, to prevent unauthorized modification of data and to 
prevent users from affecting availability. 

 
Many security properties are modeled on the concepts of event systems. An event system is a 

specification of the behavior of the system in terms of events (which could be mapped to state-
transitions in a state-machine model). Associated with events are usually inputs and outputs of 
the system, where the outputs can be seen by users. A sequence of events is called a trace. The 
set of traces of the system is usually modeled as the set implemented by the system. For the 
implementation to satisfy the security property, we analyze the set of traces. 

 
To understand security properties, we first need a more precise understanding of traces and 

specifically of Low Level Equivalency Sets (LLES). An LLES is a set of traces that have the 
same low-level events (in order) that a low-level user can observe. Formally, given a trace τ and 
a System S: 

 
LLES(τ, S) = {s | τ | L = s | L ∧ s ∈ traces(S)}     Eqn. 3 

                                                 
42 This can be generalized into a lattice-based hierarchy, and does not necessarily imply military-style security 

levels. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
174 

 
 
 
The expression τ | L denotes the trace formed by removing from τ all events not in L. The 

function traces(S) is the set of authorized traces in system S. The following security properties 
can be expressed with the LLES (Eqn. 3) notation [ZL97]: 

 
• Noninference [O’H90]: A noninference security property requires that low-level users 

should not be able to infer information about high-level users. 
• Noninterference [GM84]: A noninterference security property requires that high-level 

users are prevented from influencing the behavior of low-level users; otherwise, low-
level users could infer information about high-level user activities. 

• Non-Deducible Output [GN88]: A non-deducible output security property requires that 
low-level users cannot distinguish the events causing high-level users' output. 

• Separability [McL94]: A separability security property requires that no interaction or 
information flow is allowed between low-level and high-level users. 

• Restrictiveness [McC87]: A restrictiveness security property requires that changes in 
sequences of high level events do not affect future possible sequences of low level 
events. 

 
A large body of evidence suggests that few designers ensure that their systems meet these 

properties. Besides, the separability security property is too strong because it doesn't allow any 
interaction between low-level users and high-level users. Consider a system where the only Top 
Secret (TS) level behavior is to echo all Secret (S) level output events to a TS level device for 
archiving. This system does not satisfy true separability. Zakinthinos [ZL97] presented the 
“perfect security property (PSP)”, the weakest security property that does not allow information 
flow from high-level users to low-level users, but does allow high level outputs to be influenced 
by low level events. 

15.1.3 Perfect Security Property 
This section summarizes the details of the perfect security property. The PSP (Eqn 4)formulation 
is: 

 
Eqn 4 

∀τ ∈ traces(S) : τ |L ∈ LLES(τ, S) ∧ ∀p, s : p∧s ∈ LLES(τ, S)  

∧ s|H = () : 
∀α ∈ H : p∧(α) ∈ traces(S) ⇒ p∧(α)∧s ∈ 

LLES(τ, S)  
 
 
In this formulation, the trace p ^ s refers to the trace formed by concatenating traces p and s, 

the trace s has no high-level events, while p might have some high-level events. The possibility 
of α occurring between p and s is only dependent on the preceding high-level events in p. The 
idea behind PSP is the same as that behind Separability. All possible high-level activity and 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
175 

interleaving must be possible with all low-level activity. The difference is that PSP allows high-
level outputs to be dependent on low-level events. This does not reduce security since the low-
level user still will not know how he has influenced high-level outputs. One other benefit of PSP 
is that it is a composable property (as are separability and restrictiveness). If we decompose a 
system into individual components, and prove that each component satisfies PSP, then the 
composite system will satisfy PSP -- a property that is surprisingly not preserved by all security 
properties. 

 
Unfortunately, with all of these security properties, analysts are often stuck with a single 

level of abstraction. Even with composability, we must use the same specification of events and 
security properties, no matter which level of abstraction of implementation we are evaluating. A 
lower level may not support concepts of security levels in the context of an application, but may 
support concepts of separation and controlled information flow. A good layering approach will 
allow us to transition between levels of abstraction mapping lower level security properties to 
higher level properties. 

 
Real systems will also use multiple components, working together, to implement the system 

functionality and security policy. It is not necessarily true that each component will satisfy the 
full security property, but may satisfy a subset that when combined with other components are 
sufficient to satisfy the full system security property. A layered approach must also support the 
concept of sub-policies and partial implementation of security properties with composition. 

15.2 FORMAL MODEL OF VIRTUAL MACHINE SYSTEMS 
This section presents the formal models of multicore systems based on the analysis of a virtual 
machine system. 

15.2.1 Formal Model of Virtual Machine Systems 
Definition 1 presents the traditional model of a state machine. We can refine this model in many 
ways to represent a system that supports multiple virtual machines and multiple physical 
machines. The extensions require two things, first is a mapping from the simple model into a 
model that can represent multiple interacting state machines, one for each virtual machine, and 
second is a model that allows for the concurrent execution environment of a multicore processor. 

 
An instantiation of the above model can present more details with respect to the contents of 

the state. Take a multicore system as an instance, to be concrete; a machine state is the 
concatenation of all possible entities' states, such as all CPU register values for each CPU, the 
entire contents of memory, the entire contents of stable storage, etc. Such architecture inherently 
gives the hypervisor a complete view of all system state information. Therefore, a simplified 
instantiation of a state machine can be comprised of a finite number of entities' states with each 
being represented by a tuple < L, P, E, B >. These four components of each entity state are 
privilege label L, instruction pointer P, entity E, and storage-bound B. Such a view provides the 
ability to thoroughly observe each specific state. Privilege Label L is at least guest mode g or 
host mode h. Actually Intel VT-x provides 8 protection rings (Host Rings 0-3 and Guest Rings 0-
3), wherein Host/Guest Ring 1-2 are unused in most operating systems. The instruction pointer P 
refers to an index into storage-bound B if secure, indicating the next instruction to be executed. 
Entity E, also known as Object O, is comprised of CPU and I/O registers as well as volatile and 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
176 

stable system storage devices. The storage-bound part B gives an executable range of the 
memory for a specific VM. Suppose that the executable storage range B is of size q and an 
instruction produces the address a, 

 

 
 

 
 
We can find that the “memory trap” happens as a result of an attempt by an instruction to 

access an address which is outside of the bounds in B. If so, that means that the state of one VM 
might be affected by the execution of an instruction. 

 
A transition T represents execution of an instruction or interaction with I/O with the ability to 

observe or change certain aspects of a system. The execution of an instruction i is a transition 
allowing the system state to switch from σ to σ’. 

 
Definition 1 presents the traditional model of a state machine. We can refine this model in 

many ways to represent a system that supports multiple virtual machines and multiple physical 
machines. The extensions require two things, first is a mapping from the simple model into a 
model that can represent multiple interacting state machines, one for each virtual machine, and 
second is a model that allows for the concurrent execution environment of a multicore processor. 

 
Definition 2 presents a refined model of a state machine, represented as a composite of 

multiple constituent state machines. 
 

Definition 1: The formal model of a state machine is 

• M = (Σ, σ0, T ) 

• Σ is the set of states of the system 

• Initial State: σ0 ∈ Σ 

• T : Σ → Σ defines the allowed transitions between states. 

• The notation σ(p) denotes the substate of σ that corresponds to the named 
resource, p, in the system. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
177 

 
 
In this model, the full machine state is represented as a composite state cs(s1,…, sn). This is 

not an n-tuple, but the result of a composition function cs. This allows us to model systems 
where the constituent state machines share some portion of the overall machine state. Although 
we allow for shared state, we model system transition as a composite of individual transitions of 
the component state machines. This model allows for execution of multiple sub-machines 
simultaneously (modeling multicore and hyper-threading processing). 

 
Note, the model allows too much interaction between sub-machines, hence the inclusion of 

the two State Machine Policies. 
 

• State Machine Policy 1 (SMP1) is included to enforce the idea that we must only allow 
for authorized interactions between the sub-machines. If the overall policy permits 
interaction, then the sub-machines can share state, otherwise they should not. 

• State Machine Policy 2 (SMP2) exists for consistency in the models. If sub-machine i can 
cause a change in state for sub-machine j, then that possible change of state should be 

Definition 2:  

The formal model of a state machine M can be subdivided into a collection of 
composite state machines < σi, σ0

i ,Ti > each representing a virtual machine of the 
system, or the hypervisor. 

 
• M = (M 1,M 2,…,M n) n-tuple representing the individual state machines in 

the composite machine, where M i = < σi, σ0
i ,Ti > 

 
• ∀ σ∈Σ: σ = cs(σ1, σ2,…, σn)  where σ1 ∈ Σi 

 
• Initial State: σ0 = cs(σ0

1, σ0
2 ,…, σ0

n), 
 

• The notation cs(s1,…, sn) denotes the composite state of the system. 
 

• The extraction function S i(σ) = σi 
 returns the portion of the composite state 

relevant to sub-machine i. 
 

• T (σ) = cs(τ 1(S1(σ)), τ 2(S2(σ)), . . . , τ n(Sn(σ))) where τ i ∈ T i 
 

State Machine Policy 1: The intersection of substates must be restricted such 
that execution of τ 1 does not interact with substate σ j in violation of the security 
property. 

 
State Machine Policy 2: If the execution of τ i as part of τ ∈ T modifies a 
component of substate σ j (j ≠ i), then the transition τ j in τ must also specify that 
modification. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
178 

modeled as a possible transition in sub-machine j. This allows for a cleaner independent 
analysis of each machine, and then analysis of their composition. 

 
The next thing we have to worry about in this model is abstraction layering. Given a model 

of a state machine M at a low level in the system model (say a model of the hypervisor), how do 
we map that into the supporting infrastructure requirements of the higher level virtual machines? 
We support this using standard abstraction function, A, that maps lower level states into higher 
level abstractions. The mapping of transitions will be managed through our event model, 
discussed below. 

 
We say a portion of a state, x ∈ σ, is hidden in the abstraction if for two equivalent higher 

level abstract states σ1 = σ2, there exist different lower level states ∃ σ’1 : A(σ’1) = σ1 and ∃ σ’2 : 
A(σ’2) = σ2 where x has different values, x1 ∈ σ’1 ≠ x2 ∈ σ’2. Note that hiding portions of the 
state may require that the abstract state-machine model become non-deterministic. Although this 
is okay, some security properties evaluated at the abstract level may fail when the non-
determinism is removed through refinement to the lower-level implementation. 

 
For this model to work correctly, the security property (and associated mapping functions) 

have to ensure that sub-machines i cannot modify a hidden portion of the state that would impact 
the behavior of sub-machine j. 

15.2.2 Event System Model 
We now define a formal model of events in our system, and a mapping between these events and 
the state transitions defined in the preceding section. Definition 3 defines an event as an action, 
a, acting on behalf of a subject, s, using data from a set of resources (objects), r and possibly 
modifying members of a set of resources, w. This generic representation of event can be used at 
any layer of our architecture, with an understanding that a representation at one layer will be an 
abstraction of the representation at the next lower layer. Our state-machine model presented in 
the previous section, defines transitions as atomic changes to the state of a system. Events are 
more complex actions that may involve multiple interactions with the state, and are therefore 
represented/implemented by a sequence of state transitions as shown in Definition 343. Events 
that are specified as atomic actions do not allow for interference during their sequence of state 
transitions, whereas synchronizing events do allow interaction with other synchronizing events. 
We will address this point later in the chapter. 
 

In Definition 3 we introduce two Event Policies. These policies place restrictions on the 
semantics of the events, specifically on the mapping of events to a sequence of transitions and 
the use of objects. 
 

• Event Policy 1 (EP1) specifies that the sequence of transitions may not modify any object 
that is not specifically listed in the write-set. 

• Event Policy 2 (EP2) is a specification of determinism and completeness, which states 
that for two different states of the system, if the contents of objects in the read-sets of the 

                                                 
43 We will need to check if (a,s,r,w) is permitted for a particular state of the system. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
179 

event are the same, then the contents of all objects in the write-set will be the same after 
the event. 

 

 
 
Let us consider the ramifications of these policies. First, since the event is specified with 

respect to an abstraction of the system state (sets of objects), it is possible that a portion of the 
system state that is not part of a specified object could be modified by the event. EP1 does not 
prohibit this. For example, the instruction pointer and system clock registers are part of the 
system state, but may not be relevant in a discussion of events at a higher level of abstraction. 
However, even with the incompleteness of this policy, EP2 ensures that the contents of these 
non-modeled state components cannot interfere with the computation of the event. For example, 
if an event wishes to copy the instruction pointer into a data structure, EP2 requires that the 
instruction pointer be specified as an object in the read-set of the event. Otherwise, there may be 
two states of the system that differ only in the program counter and would therefore satisfy the 
antecedent of the implication but not satisfy the consequent, violating the policy. 

 
A layered approach to using the event model can be readily developed using the standard 

commuting theories, as depicted in Figure 50 and Definition 4. We implement higher level 
events through sequences of lower level events, defined by the implementation function I. We 
can abstract the lower level state to the higher lever state with the abstraction function A. We 
then compose the system into events from multiple components at the same level using 
Definition 5.  

 

Definition 3: The formal model for events E are defined as follows: 

• E = {(a, s, r, w) | a ∈ A, s ∈ S, r, w ∈ P(O)} is the set of events of the system. 
• S is the set of subjects 
• O is the set of objects and P(O) is powerset (set of subsets) of O. 
• r and w are two (not-necessarily disjoint) subsets of objects that are accessed 

by action a; the read-set and the write-set. 
• E is the set of events, where events correspond to state transition chains 

let τ = τ0, τ1, . . . , τn  ∈ T ∗ be a sequence of state transitions corresponding to 
event 
e = (a, s, r, w) such that: 

 
τ (x) = τn(τn−1(. . . τ1(τ0(x)) . . .)) 

 
let σ be the state of the system prior to execution of event e and σI  = τ (σ) be 
the state after execution of τ . 

 
• Events are classified as atomic or synchronizing 
 
Event Policy 1: ∀o ∈ O : o /∈ w ⇒ σI(o) = σ(o) 
 
Event Policy 2: ∀σ1, σ2 ∈ Σ : (∀o ∈ r ∪ w : σ1(o) = σ2(o)) ⇒ (∀p ∈ w : σI (p) = σI (p)) 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
180 

 

 
 

 

 
 

 
Figure 50: Standard Commuting Diagram for Implementation Correctness 

 

Definition 5: The formal model for events in a composite system are: 

 
• E ⊆  P(E). At any time there may be any number of “active” events in the 

system. 
 

• Let e ∈ E be a set of active events, and ei, ej ∈ e be two different active 
events. 

 
– If ei  and ej  are atomic events, then  

(ei.r ∩ ej .w) = (ei.w ∩ ej .w) = (ei.w ∩ ej .r) = ∅ 
– If ei  is a synchronizing  event, and  

(ei.r ∩ ej .w) ≠ ∅    ∨  (ei.w ∩ ej .w) ≠ ∅   ∨   (ei.w ∩ ej .r) ≠ ∅ 
   then ej  and ei  must be partner synchronizing events. 
 

Definition 4: The formal model for commuting: 

• I  is an implementation function (mapping event e at a high level to a 
sequence of events e1, e2, . . . at a lower level. 

• A  is an abstraction function  that maps the state of the lower level to the higher 
level of abstraction 

• If I(e) = e’1
 , e’2

 , e’3
 ; τ is the transition sequence for e and τ’1 ,‘ τ’2

 , τ’3
 are the 

transition sequences for e’1, e’2, e’3, respectively, then these functions commute if 
each of the following is true 
 
• τ(σ1) = σ2   ∧  (τ’3 ° τ’2  ° τ’1)( σ’1) = σ’2 
• A(σ’1) = σ1   ∧  A(σ’2) = σ2 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
181 

Although this sounds straight forward, there are many issues that must be addressed to ensure 
that this abstraction does not violate the security properties of the system. These issues include: 

 
• The State Machine and Event Policies defined earlier must hold. 
• There must be a clear abstraction mapping between objects of the two levels (referenced 

in the read-sets and write-sets of events at both levels). 
• For all hidden components, x, of a state, the value of the hidden component does not 

change the abstraction or interpretation functions, or cause a violation of the security 
property or correctness of the commuting diagram. 

 
Now, with the model in place, we can define security properties, such as non-interference, or 

PSP at the top level of abstraction. For that property to hold, the issues mentioned above must be 
satisfied. However, it is not required that the lower level have the same “view” of the world; just 
that it support the higher level view. This is the normal model for computing languages; high 
level abstractions are refined to lower level implementations, and will work for security as well. 

 
Now that we have an intuitive understanding of theoretical model how to represent a 

multicore system and then how to improve its security, how can we implement separate secure of 
each VM in current multicore architectures? We will illustrate the security requirements with an 
exemplary 3-layer framework of the machine model in the following subsection. 

15.3 EXAMPLE LAYERED ASSURANCE 
Consider a system such as that depicted in Figure 48-Figure 49 and in Figure 51. In Figure 51 (a) 
we have the hierarchy of authorized states of the system. The hardware supports a large set of 
authorized system states (states that will not cause a hardware failure or exception). However, we 
have the ability to configure the hardware (the CFG box in Figure 51 (b)) to limit these states. 
This configuration consists of setting execution modes and programming MMU page tables, VM 
modes, etc. The VMM configures the hardware to a limited subset of the allowable states, and 
the user can configure the VMM. 

 
 

 
Figure 51: Layered Policy and Implementation Models 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
182 

At the highest layer of abstraction, we have the user view of the world, as depicted in Figure 
49(a) and the system designer view (Figure 51(b)). At the highest level, we have an 
understanding of the security policy, we have subjects and objects mapped to security levels 
(e.g., Top-Secret and Secret). At the system designer view we understand the security properties 
of the system. The system designer defines executable entities such as users mapped with 
security levels, communication channels, and supporting hypervisor level resources such as 
guards and Extended Page Tables (EPT); all in support of the policy. The system implementer 
needs to map events such as “VM1 writes message to a specific location inside VM2” into a 
sequence of events which include locating the memory address of the message by traversing the 
EPT of the VMS244, verifying the memory writeability for VM1, and storing the message into 
the location VM1 specifies. 

 
We must prove that the security property enforced at this level supports the high level 

security policy. We do that with many assumptions about the underlying infrastructure and the 
security policy exported by the lower level. Here we can possibly use PSP and the LLES 
definitions, but may need to add concepts such as non-transitive information flow to allow 
trusted implementations of the hypervisor and corresponding EPT. 

15.3.1 Hardware Layer 
At the lowest level we have the hardware platform which supports the concepts of execution in a 
context. A context is defined as the execution mode (e.g., supervisor/user, privilege ring, VM 
status) and the set of available resources (e.g., the memory maps in the MMU). The hardware 
layer provides mechanisms to set and change the configurations of contexts, and to perform 
context changes. 

 
Subjects in the hardware model are mapped to the contexts that the hardware supports. All 

events are bound to the current executing subject of the hardware. In a multicore model, there 
may be multiple subjects, one running on each logical processor, or on a collection of processors. 
The subjects of the hardware are the physical resources of the hardware, memory, devices, 
registers, the MMU, etc. In the end, the hardware exports a model of an executing set of systems, 
the individual logical processors, and current executing contexts. 

 
The security policy of the hardware does not directly map to the concepts of high and low-

level users. However, we can still map the security policies of the hardware to allowable 
sequences of events e1

hw,e2
hw,…, en

hw. These will be of the form e1
hw , e2

hw , … en
hw where 

each ei
hw  will be  sequence of events for current contexts, or the context switch events. The set 

of traces for the hardware, traces(HW), will only contain those event that are allowable within 
the current contexts. If the context supports virtual memory and MMU-based memory maps, the 
events will corresponding to available virtual memory accesses and MMU maps. At this level of 
abstraction, verification of the correct behavior of the system includes verification that the 
hardware supports the configuration data and does not violate the contexts. The security property 
of the hardware must clearly specify the limitations of the hardware execution model and 

                                                 
44 VMS2 refers to Virtual Machine System 2, which contains not only VM2, but also VMM2 system. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
183 

configuration. We should not attempt to model security levels, or user intent at this level, just the 
correct implementation of the configuration data. 

15.3.2 VMM Layer 
The VMM layer is responsible for defining the contexts of the hardware, and thus will only 
authorize a subset of the allowable states with a more restrictive policy (Figure 51). The 
hardware provides the basic security mechanisms of isolation: virtualization, virtual memory, 
memory-management, and context switching. It also supports multiple execution units. The 
hardware supports execution of each logical CPU core in either root-mode or in a guest (virtual 
machine) mode. The VMM configures the memory maps, assigns usage of the cores to the VMs 
and manages transitions in and out of virtualization mode. 

 
The events of the VMM now correspond to actions of the individual VMs (in the 

environment of the VMM) and the control events of the VM (configuring the hardware, 
establishing the VM contexts). The VMM model of the system partitions the physical resources 
of the hardware into the subset of resources available to the individual VMs. Events at the VMM 
level will mostly still be at the same granularity of the hardware level, with additions for VMM 
specific actions (e.g., creation of a VM, swapping in/out a VM). However, the subjects in the 
VMM are now mapped to individual VMs and the VMM itself. The objects of the system are 
still mostly the hardware resources, but also now the VMM data structures representing the 
contexts of the VMs, possible buffers and other internal resources. We need a mapping of these 
objects onto the Hardware and a mapping of the VMM-specific events into Hardware events. 

 
In the end, the VMM exports a model of an executing set of virtual systems, the individual 

VMs, and current executing contexts for those VMs. We still cannot model security levels, but 
we have now separated the hardware (time and space) into VM contexts, and can have VMM 
rules for behavior of those VMs. For example, if the VMM provides some simple services for 
inter-VM communications, or for VM managements, the VMM configuration data must indicate 
permissions for access to those services. The user will utilize the services of the VMM through 
configuration data, and verification of the VMM assures that it supports the policy specified by 
the configuration data (e.g., no communication occurs between VMs unless authorized in the 
VMM configuration data). 

15.3.3 User Layer 
At the highest layer of abstraction, we have the user view of the world, as depicted in Figure 
48(a) and the system designer view (Figure 48(b)). The VMM does not have a concept of top 
secret or secret, routers, databases or guards. The VMM has the concepts of virtual machines, 
shared memory regions, inter-VM communications, and private resources. The VMM also maps 
and schedules VMs to particular cores. The configuration of the VMM is what enables us to 
provide the abstraction to the user level. The user level designer can utilize the VMM concepts 
of separation and controlled information flow to design a system similar to Figure 48(b). This 
system will implement guards and routers to ensure properly labeled and filtered messages 
between two users (with guards, routers and users all mapped to individual virtual machines). 

 
The system designer defines executable entities such as users mapped with security levels, 

communication channels, and supporting application level resources such as guards and routers; 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
184 

all in support of the policy. The system implementer needs to map events such as “send message 
to DB” into a sequence of events which include sending message to MMR, routing from MMR 
to GC, tagging the message in GC, sending it back to MMR, and then routing it from MMR to 
DB. We must prove that the security property enforced at this level supports the policy. We do 
that with many assumptions about the underlying infrastructure and the security policy exported 
by the lower level. Here we can possibly use PSP and the LLES definitions, but may need to add 
concepts such as non-transitive information flow to allow trusted implementations of the 
hypervisor and corresponding EPT. 

15.3.4 More Specific Examples 
Let's dive into the details of the above example, which will specify how to decompose the user 
level events into a sequence set of hardware level events. The example will show how events 
proceed when the system performs “VM1 writes message to a specific location inside VM2” and 
then a VM exit occurs. First, locate the memory address of the message by traversing EPT. In 
this event (a'1,s'1,r'1,w'1) from a hardware point of view a'1 refers to locate memory address, s'1 is 
the subject user in VM1, and host physical memory address is retrieved through the traversal of 
EPT in VMS2, which means that r'1 is the EPT. The next event (a'2,s'2,r'2,w'2) will examine 
whether this range of memory can be accessed by VM1? The translation from guest physical 
addresses to physical addresses is determined by a set of EPT paging structures. EPT also 
provides the privileges to decide if access is allowed or not, such as read access (bit 0), write 
access (bit 1) and execute access (bit 2) in each EPT PML4 entry, EPT PDPTE, EPT PDE, and 
EPT Page Table Entry (the details of these entries are illustrated in Section 0). If an EPT page 
structure entry contains an unsupported value in the course of translation the memory address of 
the message, a EPT violation will occur due to such an attempt and cause a VM Exit. In this 
event, a'2 refers to read access, and r'2 is the EPT. The third event (a'3,s'3,r'3,w'3) due to the VM 
exit, records information about the nature and reason for the VM exit in the VM-exit information 
fields. a'3 refers to write access, and w'3 includes exit_qualification register,  
guest_linear_address field and guest_physical_address field in the corresponding VM structure. 
The final event will be the trap to the VMM. According to Figure 50, Figure 52 shows how 
events proceed when a VM exit happens. 
 

 
Another example covers instruction execution, which might cause VM exits unconditionally 

or based on the settings of VM-execution controls. Let's check one specific example, and 
illustrate how to decompose the user level event into a sequence set of hardware level events. 
The example demonstrates when guest software attempts to execute PAUSE and the “PAUSE 

 
Figure 52: Event Procedures of a VM Exit Example 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
185 

exiting” VM-execution control was 1. First, user attempt to execute PAUSE instruction. In this 
event (a'1,s'1,r'1,w'1)  from a hardware perspective, a'1 refers to execute, s'3 is the subject thread in 
VM1. The next event (a'2,s'2,r'2,w'2)  will examine VMM level to check if the “PAUSE exiting” 
VM execution control is set? If not, the instruction executes normally. Otherwise, such an 
attempt causes a VM Exit. In this event, a'2 refers to read, and r'2 is the VM execution control 
field. Once a VM exit happens, the third event (a'3,s'3,r'3,w'3)  records information about the 
nature and reason for the VM exit in the VM-exit information fields. a'3 refers to write, and w'3 
includes VM-exit instruction-length register, and VM-exit instruction information register in the 
corresponding VM structure. The final event will be the trap to the VMM. 

15.4 SUMMARY 
Intel and AMD have offered hardware-assisted virtualization technology to enable efficient 
virtualization in their CPU design. These advances have created a window of opportunities to 
provide a profound impact on the reliability of multicore systems, however, a high assurance 
scheme must be proven to correctly implement the security functions in its specifications and 
effectively mitigate risks to a level commensurate with the value of the assets it protects 
[LIN06]. Therefore, the design of a secure multicore system requires architects to develop a 
system architecture that satisfies necessary security policies for this multicore system. One 
important contribution of our work is the modeling of a layered bottom-up security policy 
framework in terms of multiple secure architectures that are related by formal mappings. We 
have proposed an approach for specifying and verifying a layered assurance scheme (from 
hardware layer, through hypervisor layer, up to user layer) for multicore architectures. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
186 

 PART III CONCLUSION AND FUTURE WORK 16
 

Multicore processors are becoming ubiquitous in the enterprise because they can be utilized to 
get higher performance and efficiency by splitting system tasks into subtasks and distributing 
them across the multicore chipset. As one of the most important multicore architectural features, 
virtualization technology has spurred a number of exciting research with virtual machines, 
especially in the area of hardware-assisted extensions. Both Intel and AMD have introduced 
hardware virtualization extensions in their current mainstream processors, such as Intel VT-x and 
AMD-V. However, while providing services in a virtual machine gains benefits, it has also led to 
explosive growth of security concerns in virtual machine systems. 

16.1 CONCLUSION 
To evaluate security of virtualization technologies in multicore architectures, this report first 
examined hardware features for virtualization technology in multicore processors. Furthermore, 
by taking advantage of hardware virtualization support, we developed a lightweight virtual 
machine monitor prototype, called IAVMM, which is purpose-built for Intel 64 architecture and 
security analysis of multicore systems. In order to strengthen reliability in multicore systems, we 
proposed a modeling of a layered bottom-up security policy framework in terms of multiple 
secure architectures that are related by formal mappings. 

16.1.1 Summary of Part III of this project 
To evaluate the virtualization technologies in multicore systems, we first examined the CBEA 
architecture. Our paper [SHAF10b] presents an overview of the CBEA processor and potential 
security concerns in this architecture, such as security vulnerabilities of local storage and 
registers for each SPU. An experimental result also demonstrated that the “unfair” memory 
access mechanism does not exist in CBEA architecture. Second, we evaluated hardware-assisted 
virtualization technologies in multicore processors, such as Intel VT-x and AMD-V. They 
provide faster performance for virtualization and simplify VMM implementations. Intel VT-x 
extensions are conceptually the same as those implemented in AMD-V, including CPU 
virtualization, memory virtualization and I/O virtualization. 

 
To develop a platform that allows us to run a VM system and evaluate the security features 

of the underlying hardware features, we decided to build our own lightweight VMM, called 
IAVMM, based on Intel 64 architecture [HAF11]. By taking advantage of hardware 
virtualization support and concentrating only on security analysis functionality issues, we were 
able to keep it thin and simple. IAVMM is capable of extracting BIOS and system information 
and offering good transparency to present host and guest states, hence building a fundamental 
block to determine if there exist possible vulnerabilities in VM systems. Through IAVMM, 26 
sensitive but unprivileged instructions were all evaluated and the results show that 20 of them are 
handled securely via the proper configuration of VMCS. Programmed exit conditions in 
IAVMM also help us to invoke a VM exit for convenience of experimental security analysis. In 
order to comprehensively examine hardware features and security concerns in multicore 
architectures, we wake up multiple logical processors in this platform and performed 
experiments on security analysis. The experiments about interference between multiple VM 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
187 

systems demonstrate that unauthorized subjects can be prevented from accessing protected 
resources, if the EPT is configured appropriately. Our IAVMM is really a lightweight VMM 
compared with the commodity hypervisors. Even though it doesn't provide full functionalities of 
commodity VMMs, it is enough for research experimentations and extensible if more features 
are needed. 

 
As the demand for system virtualization grows, so does the need to handle the security 

challenges existing in VM systems, such as VM escapes and VMBRs. The design of a secure 
system requires architects to develop a system architecture that satisfies security policies. In 
order to improve our understanding of security in multicore systems, we present and examine a 
layered framework (from hardware level, through hypervisor level, up to user level) for secure 
multicore architectures, and introduce a layered assurance scheme for such architectures 
[AFHS11]. We proposed an approach for specifying and verifying this layered assurance scheme 
for multicore architectures. 

 
The work presented in this report leads to a better understanding of virtualization 

technologies and security concerns in multicore architectures, which will benefit architects and 
researchers by providing security evaluation of hardware features and a lightweight virtual 
machine monitor for security analysis of such architectures. Moreover, a layered assurance 
scheme is provided in this report to assist in the evaluation of security for multicore architectures 
design. 

16.2 FUTURE WORK 
The previous sections have summarized the achievements of this report. However, as in every 
research effort, the results have indicated a number of issues where further work lead to other 
important conclusions. Some of these areas include: 

 
1. More Experiments:  Now that we have a platform (IAVMM) for evaluating the security 

of virtualization technologies in multicore architectures, specifically in Intel 64 
architecture. We presented a lot of security concerns based on this platform from the 
hardware viewpoint. However, research efforts are still worthy of digging out more 
potential security issues as well as more experiments. 

 
2. IAVMM platform for AMD: IAVMM can only support the Intel 64 architecture and 

can be used as a platform for security analysis and experimentation of the hardware-
based virtualization technologies. However, AMD has also released AMD-V. Therefore, 
IAVMM should support AMD64 to be used for security analysis in AMD64 architecture 
as well in the future. 

 
3. Nested virtualization: The idea of nested virtualization [BYDD+10] is to run multiple 

other virtual machines in a virtual machine. Of course the concept can be extended to 
recursive virtualization for the x86 architecture. As commodity operating systems gain 
virtualization functionality, nested virtualization will be required to run those operating 
systems in virtual machines. For example, Windows 7 already supports a compatible 
Windows XP mode; that is, Windows XP runs in a virtual machine. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
188 

Unfortunately, in Intel VT-x, executing VMLAUNCH instruction in a VM 
environment (VMM non-root operating mode) causes a VM exit, which would prevent 
the nested virtualization from being implemented in the Intel 64 architecture. There are 
also other compelling concerns about nested virtualization, which are as follows: 

 
a. Nested VMX virtualization for nested CPU virtualization; 
b. Multi-dimensional paging for nested MMU virtualization; 
c. Multi-level device assignment for nested I/O virtualization. 

 
4. Enforcement of security policy: Research efforts are still underway to verify the 

security requirements in our security policy framework, and provide the safeguards to 
mitigate the risks. Even if the system has been compromised, the policy architecture 
should be responsible for taking appropriate action. 

 
In summary, evaluation of multicore architectures is an area full of exciting research, and we 

will continue our efforts to examine virtualization technology in multicore architectures in order 
to demonstrate how this key hardware component has impact on the construction of secure 
multicore systems. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
189 

 
 
 
 
 
 
 
 

Part IV 
 

REFERENCES AND APPENDICES 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
190 

 BIBLIOGRAPHY 17
 

[AA00] Keith Adams and Ole Agesen. A comparison of software and hardware 
techniques for x86 virtualization. In International Conference on Architectural 
Support for Programming Languages and Operating Systems, pages 2–13, 2000. 

 
[AFHS11]  Jim Alves-Foss, Xiaohui He, and Jia Song. Layered assurance scheme for 

multicore architectures. In Layered Assurance Workshop, 2011. 
 
[AFOTH06] Jim Alves-Foss, Paul W. Oman, Carol Taylor, and Scott Harrison. The MILS 

architecture for high-assurance embedded systems. International Journal of 
Embedded Systems, 2(3/4):239–247, 2006. 

 
[AJM+06] Darren Abramson, Jeff Jackson, Sridhar Muthrasanallur, Gil Neiger, Greg 

Regnier, Rajesh Sankaran, Ioannis Schoinas, Rich Uhlig, Balaji Vembu, and 
JohnWeigert. Intel Virtualization Technology for directed I/O. Intel Technology 
Journal, 10(3):179–192, August 2006. 

 
[AMD09]  AMD. AMD I/O Virtualization Technology (IOMMU) Specification, Feb 2009. 
 
[BDF+03]  aul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, 

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of 
virtualization. In ACM Symposium on Operating Systems Principles, pages 164–
177, 2003. 

 
[BDRS08]  Carolyn Boettcher, Rance DeLong, John Rushby, andWilmar Sifre. The MILS 

component integration approach to secure information sharing. In IEEE/AIAA 
Digital Avionics Systems Conference, pages 1.C.2 (1–14), 2008. 

 
[BL76]  D.E. Bell and L.J. LaPadula. Technical Report ESD-TR-75-306, The MITRE 

Corporation, Bedford, MA: HQ Electronic System Division, March 1976. 
 
[BLRS08]  Sergey Bratus, Michael E. Locasto, Ashwin Ramaswamy, and SeanW. Smith. 

Traps, events, emulation, and enforcement: managing the yin and yang of 
virtualizationbased security. In ACM Workshop on Virtual Machine Security, 
pages 49–58, 2008. 

 
[BOAFS10]  R. Bradetich, P. Oman, J. Alves-Foss, and J. Smith. Towards resilient multicore 

architectures for real-time controls. In International Symposium on Resilient 
Control Systems, 2010. 

 
[Bri]  Peter Bright. The Ars technical guide to I/O virtualization. 

http://arstechnica.com/business/guides/2010/02/io-virtualization.ars/  
Last accessed Nov, 2010. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
191 

 
[BYDD+10]  Muli Ben-Yehuda, Michael D. Day, Zvi Dubitzky, Michael Factor, Nadav Har’El, 

Abel Gordon, Anthony Liguori, Orit Wasserman, and Ben-Ami Yassour. The 
turtles project: Design and implementation of nested virtualization. In USENIX 
Symposium on Operating Systems Design and Implementation, 2010. 

 
[Cha10]  D. Champagne. Scalable Security Architecture for Trusted Software. PhD thesis, 

Princeton University, 2010. 
 
[CN01]  Peter M. Chen and Brian D. Noble. When virtual is better than real. In HotOS, 

pages 133–138, 2001. 
 
[DEG]  L. DuFlot, D. Etiemble, and O. Grumelard. Using CPU system management mode 

to circumvent operating system security functions.  
fawlty.cs.usfca.edu/˜cruse/cs630f06/duflot.pdf; accessed 31-Mar-2012. 
 

[Dep85a]  U.S. Department of Defense, editor. Guidance for Applying the Department of 
Defense Trusted Computer Systems Evaluation Criteria in Specific Environments 
(“Light Yellow Book”). Fort George G. Meade, Maryland 20755-6000, June 1985. 

 
[Dep85b]  U.S. Department of Defense, editor. A Guide to Understanding Trusted Recovery 

(“Yellow Book”). Fort George G. Meade, Maryland 20755-6000, June 1985. 
 
[Dep87]  U.S. Department of Defense, editor. A Guide to Understanding Discretionary 

Access Control in Trusted Systems (“Orange Book”). Fort George G. Meade, 
Maryland 20755-6000, Sept. 1987. 

 
[Dep93]  US Department of Defense. A Guide to Understanding Covert Channel Analysis 

of Trusted Systems (“Light Pink Book”). Fort George G. Meade, Maryland, 1993. 
 
[Dep01]  U.S. Department of Commerce. Security Requirements for Cryptographic 

Modules, 2001. 
 
[DLM+06]  Yaozu Dong, Shaofan Li, Asit Mallick, Jun Nakajim, Kun Tian, Xuefei Xu, Fred 

Yang, and Wilfred Yu. Extending Xen with Intel virtualization technology. Intel 
Technology Journal, 10(3):193–203, August 2006. 

 
[Dou10]  H. Douglas. Thin hypervisor-based security architectures for embedded platforms. 

Master’s thesis, The Royal Institue of Technology, Stockholm, Sweden, 2010. 
 
[DRSL08]  Artem Dinaburg, Paul Royal, Monirul I. Sharif, and Wenke Lee. Ether: malware 

analysis via hardware virtualization extensions. In ACM Conference on Computer 
and Communications Security, pages 51–62, 2008. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
192 

[ELND09]  Eric Lacombe, Cincent Nicomette, and Yves Deswarte. Enforcing kernel 
constraints by hardware-assisted virtualization. Journal in computer virology, 
August 2009.  

 
[FAD+06]  B. Flachs, S. Asano, S. Dhong, P. Hofstee, G. Gervais, R. Kim, T. Le, P. Liu, J. 

Leenstra and J. Liberty, B. Michael, H. Oh, S. Mueller, I. Takahashi, A. 
Hatakeyama, Y. Wantanaby, N. Yano and D. Brokenshire, M. Peyravian, V. To, 
and E. Iwata. The microarchitecture of the synergistic prococessor for a cell 
processor. IEEE Journal of Solid-State Circuits, 41(1), 2006. 

 
[FO06]  John Fisher-Ogden. Hardware support for efficient virtualization.  
 http://cseweb.ucsd.edu/˜jfisherogden/hardwareVirt.pdf, 2006. 
 
[Fra06]  M. Franz. Moving trust out of application programs: A software architecture 

based on multi-level security virtual machines. Technical Report TR. 06-10, 2006. 
 
[Fre11a]  Freescale Semiconductor. e500mc Core Reference Manual, 2011. Doc. 

#E500MCRM, Rev.0. 
 
[Fre11b]  Freescale Semiconductor. EREF 2.0: A Programmer’s Reference Manual for 

Freescale Power Architecture Processors, 2011. Doc #EREF RM, rev.0. 
 
[Fre11c]  Freescale Semiconductor. P4080 QorIQ Integrated Multicore Communication 

Processor Family Reference Manual, 2011. Doc. #P4080RM, rev.0. 
 
[Fre11d]  Freescale Semiconductor. QorIQ Data Path Acceleration Architecture (DPAA) 

Reference Manual, 2011. 
 
[Fre12]  Freescale Semiconductor. P4080 Rev. 2 Security (SEC 4.0) Reference Manual, 

2012. Doc. #P4080SECRM, rev.2. 
 
[GM84]  Joseph A. Goguen and Jos´e Meseguer. Unwinding and inference control. In 

IEEE Symposium on Security and Privacy, pages 75–87, 1984. 
 
[GN88]  Joshua D. Guttman and Mark E. Nadel. What needs securing. In CSFW, pages 

34–57, 1988. 
 
[Gol72]  R. Goldberg. Architectural Principles for Virtual Computer Systems. PhD thesis, 

Harvard University, 1972. 
 
[GR03]  Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based 

architecture for intrusion detection. In Symposium on Network and Distributed 
Systems Security, 2003. 

 
[GRU]  Grub legacy. http://www.gnu.org/software/grub/grub-legacy.en.html. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
193 

[HAF11]  Xiaohui He and Jim Alves-Foss. A lightweight virtual machine monitor for 
security analysis on Intel 64 architecture. Journal of Computing Sciences in 
Colleges, 25(1), 2011. 

 
[HHOAF05]  W. S. Harrison, N. Hanebutte, P. Oman, and J. Alves-Foss. The MILS  

architecture for a secure global information grid. Crosstalk: The Journal of 
Defense Software Engineering, 18(10):20–24, Oct 2005. 

 
[HOL+05]  N. Hanebutte, O. Oman, P.M. Loosbrock, A. Holland, W.S. Harrison, and J. 

Alves-Foss. Software mediators for transparent channel control in unbounded 
environments. In Proc. Information Assurance Workshop, pages 201 – 206, June 
2005. 

 
[Hyp]  Hyper-v project.  

http://www.microsoft.com/windowsserver2008/en/us/hyperv-main.aspx/.  
 
[IBM]  IBM Corporation. Cell Broadband Engine Architecture.  

http://www.01.ibm.com/chips/techlib/techlib.nsf/techdocs/1AEEE1270EA277638
7257060006E61BA/$file/CBEA_v1.02_11Oct2007_pub.pdf. 
 

[IBM07a]  IBM Corporation. Cell Broadband Engine CMOS SOI 90 nm Hardware 
Initialization Guide v1.5, 2007. 

 
[IBM07b]  IBM Corporation. Cell Broadband Engine Programming Handbook, April 2007. 
 
[ine]  P4 series – p4080 multicore processor.  

http://cache.freescale.com/files/netcomm/doc/fact_sheet/QorIQ_P4080.pdf?fpsp=
1; accessed 19-Mar-2011. 
 

[ine07]  Tilera now shipping the TILE64 processor: the world’s highest performance 
embedded processor.  
http://www.marketwire.com/press-release/tilera-now-shipping-tile64-processor-
worlds-highest{-performance-embedded-processor-}761947.htm 
accessed 19-mar-2011. 2007. 
 

[ine09]  Key architectural features AMD AthlonTMx2 dual-core processors. 2009. 
 
[ine11]  Moores law and Intel innovation.  

http://www.intel.com/about/companyinfo/museum/exhibits/moore.htm, accessed 
23-Mar-2011. 
 

[Int08] Intel Corporation. Intel Virtualization Technology for Directed I/O Architecture 
Specification, Sep 2008. 

 
[Int09a] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume 3: 

System Programming Guide, Dec 2009. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
194 

 
[Int09b]  Intel Corporation. Intel trusted execution technology (Intel TXT) software 

development guide. Technical Report Document Number: 315168-006, Intel 
Corporation, December 2009. 

 
[Int12]  Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual: 1, 2A, 2B, 

2C, 3A, 3B, and 3C, 2012. 
 
[JWX10]  Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware detection and 

monitoring through VMM-base “out-of-the-box” semantic view reconstruction. 
ACM Trans. Information System Security, 13(2), 2010. 

 
[Kan06]  K. Kaneda. Tiny virtual machine monitor, Jun 2006.  

http://web.yl.is.s.u-tokyo.ac.jp/˜kaneda/tvmm/  
 

[Kan08]  David Kanter. Inside Nehalem: Intel’s future processor and system. 
http://realworldtech.com/page.cfm?ArticleID=RWT040208182719&p=2; Last 
accessed Feb, 2010. 

 
[Kar05]  Paul Karger. Multi-level secure requirements for hypervisors. In Proceedings of 

the 21st Annual Computer Security Applications Conference, pages 267–276, 
2005. 

 
[KCW+06]  Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, 

and Jacob R. Lorch. Subvirt: Implementing malware with virtual machines. In 
IEEE Symposium on Security and Privacy, pages 314–327, 2006. 

 
[LIN06]  Timothy E. Levin, Cynthia E. Irvine, and Thuy D. Nguyen. Least privilege in 

separation kernels. In International Conference on Security and Cryptography, 
pages 355–362, 2006. 

 
[Mal08]  D. Maliniak. Software rules the day in multicore SoC design. 

http://electronicdesign.com/article/eda/software-rules-the-day-in-multicore-soc-
design1864.aspx, 2008. 
 

[MBH+07]  D. Marr, F. Binns, D. Hill, G. Hilton, D. Koufaty, J. Miller, and M. Upton. 
Hyperthreading technology architecture and microarchitecture. Intel Technical 
Journal, 6(1), Feb. 2007. 

 
[McC87]  Daryl McCullough. Specifications for multi-level security and a hook-up 

property. In IEEE Symposium on Security and Privacy, pages 161–166, 1987. 
 
[McL94]  J. McLean. A general theory of composition for trace sets closed under selective 

interleaving functions. In IEEE Symposium on Research in Security and Privacy, 
pages 79–93, 1994. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
195 

[MM07]  Thomas Moscibroda and Onur Mutlu. Memory performance attacks: Denial of 
memory service in multicore systems, 2007. 

 
[MQRG97]  Mark Moriconi, Xiaolei Qian, Robert A. Riemenschneider, and Li Gong. Secure 

software architectures. In IEEE Symposium on Security and Privacy, pages 84–
93, 1997. 

 
[MS00]  Robert Meushaw and Donald Simard. NetTop — commercial technology in high 

assurance applications. Tech Trend Notes, 9(4), 2000. 
 
[NALS06]  Kyle J. Nesbit, Nidhi Aggarwal, James Laudon, and James E. Smith. Fair queuing 

memory systems. In MICRO, pages 208–222, 2006. 
 
[NSJ+09]  Anh M. Nguyen, Nabil Schear, HeeDong Jung, Apeksha Godiyal, Samuel T. 

King, and Hai D. Nguyen. MAVMM: Lightweight and purpose built VMM for 
malware analysis. In ACSAC, pages 441–450, 2009. 

 
[NSL+06]  Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig. Intel 

Virtualization Technology: Hardware support for efficient processor 
virtualization. Intel Technology Journal, 10(3):167–177, August 2006. 

 
[NVD]  http://nvd.nist.gov/. Last accessed Nov 1, 2010. 
 
[NW10]  Peter Neumann and Robert Watson. Capabilities revisited: A holistic approach to 

bottom-to-top assurance of trustworthy systems. In Layered Assurance Workshop 
LAW, 2010. 

 
[O’H90]  C. O’Halloran. A calculus of information flow. In Acte de ESORICS 90, 

Toulouse, pages 147–159, October 1990. 
 
[pap09]  An introduction to the Intel quickpath interconnect. 2009. 
 
[PCIa]  Conventional PCI. http://www.pcisig.com/specifications/conventional/. 
 
[PCIb]  PCI Express. http://www.pcisig.com/specifications/pciexpress/. 
 
[Per05]  C. Percival. Cache missing for fun and profit. 2005. 
 
[PG74]  Gerald J. Popek and R. P. Goldberg. Formal requirements for virtualizable third 

generation architectures. Communications of the ACM, 17(7), 1974. 
 
[PPPC07]  L. Peng, J. Peir, T. Prakash, and Y. Chen. Memory performance and scalability of 

Intel’s and AMD’s dual-core processores: A case study. In Proc. of the IEEE 
International Conference on Performance, Computing and Communications, 
2007. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
196 

[PSE09]  Jonas Pfoh, Christian Schneider, and Claudia Eckert. A formal model for virtual 
machine introspection. In Workshop on Virtual Machine Security, pages 1–10, 
November 2009. 

 
[RDK+00]  Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter R. Mattson, and John D. 

Owens. Memory access scheduling. In ISCA, pages 128–138, 2000. 
 
[RI00]  John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s ability to 

support a secure virtual machine monitor. In USENIX Security Symposium, pages 
129–144, 2000. 

 
[ROAF+06]  B. Rossebo, P. Oman, J. Alves-Foss, R. Blue, and P. Jaszkowiak. Using spark-ada 

to model and verify a mils message router. In Proc. International Symposium on 
Secure Software Engineering, Mar. 2006. 

 
[Rob99]  J. Robin. Analyzing the Intel Pentium’s capability to support a secure virtual. 

Master’s thesis, Naval Postgraduate School, 1999. 
 
[RT07]  Joanna Rutkowska and Alexander Tereshkin. Is game over(), anyone? Technical 

report, Caesars Palace, Las Vegas, August 2007. 
 
[Rus81] J. Rushby. Design and verification of secure systems. ACM Symposium on 

Operating System Principles, 15(5):12–21, December 1981. 
 
[Rut08]  Joanna Rutkowska. Security challenges in virtualized environments. In RSA 

Conference, 2008. 
 
[RWW]  M. Riley, J.Warnock, and D.Wendel. Cell broadband engine processor: Design 

and implementation. http://www.csd.uoc.gr/˜hy529/docs/riley.pdf; Accessed: 
09/25/2011. 

 
[SAF06a]  J. Son and J. Alves-Foss. Covert timing channel analysis of rate monotonic 

realtime scheduling algorithm in MLS systems. In Proc. IEEE Information 
Assurance Workshop, June 2006. 

 
[SAF06b]  J. Son and J. Alves-Foss. Covert timing channel capacity of rate monotonic real-

time scheduling algorithm in MLS systems. In Proc. IASTED International Conf. 
on Communication, Network and Information Security, pages 13–19, Oct. 2006. 

 
[SAF07]  J. Son and J. Alves-Foss. High level specification of non-interference security 

policies in partitioned MLS systems. In Proc. IASTED International Conf. on 
Communication, Network and Information Security, Sept. 2007. 

 
[SAF09]  J. Son and J. Alves-Foss. A formal framework for real-time information flow 

analysis. Computers & Security, (6):421–432, 2009. 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
197 

[SC06]  United States and William L. Clay. Information assurance [electronic resource] : 
national partnership offers benefits, but faces considerable challenges : report to 
the Honorable William Lacy Clay, House of Representatives. U.S. Government 
Accountability Office, [Washington, D.C.] :, 2006. 

 
[Sca08]  M. Scarpino. Programming the Cell Processor For Games, Graphics, and 

Computation. Prentice Hall, Ann Arbor, MI, 2008. 
 
[SET+09]  Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa Omote, 

Shoichi Hasegawa, Takahi Horie, Manabu Hirano, Kenichi Kourai, Yoshihiro 
Oyama, Eiji Kawai, Kenji Kato, Shigeru Chiba, Yasushi Shinjo, and Kazuhiko 
Kato. Bitvisor: A thin hypervisor for enforcing I/O security. In ACM SIGPLAN & 
ACM SIGOPS Conf. on Virtual Execution Environments, pages 121–130, 2009. 

 
[SHAF10a]  Jessica Smith, Xiaohui He, and Jim Alves-Foss. A security review of the Cell 

Broadband Engine processor. In Hawaii International Conference on System 
Sciences, 2010. 

 
[SHAF10b]  Jessica Smith, Xiaohui He, and Jim Alves-Foss. A security review of the cell 

broadband engine processor. In HICSS, pages 1–8, 2010. 
 
[SK09]  H. P. Hofstee S. Keckler, K. Olukotun. Multicore Processors and Systems. 

Springer, 2009. 
 
[SLQP07]  Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: a tiny 

hypervisor to provide lifetime kernel code integrity for commodity OSes. 
Operating Systems Review, 41(6):335–350, December 2007. 

 
[Smi10]  J. Smith. In investigation of hardware security in multicore architectures. 

Master’s thesis, University of Idaho, 2010. 
 
[SN05]  J.E. Smith and Ravi Nair. The architecture of virtual machines. Computer, 

38(5):32 – 38, May 2005. 
 
[Son06]  Sony Corporation. Cell Broadband Engine Architecture v1.01, 2006. 
 
[Suh05]  G. E. Suh. AEGIS: A Single-Chip Secure Processor. PhD thesis, Massachusetts 

Institute of Technology, 2005. 
 
[Sut05]  H. Sutter. The free lunch is over: A fundamental turn toward concurrency in 

software. Dr. Dobb’s Journal, 30(3), 2005. 
 
[TGC87]  C.-R. Tsai, V. D. Gligor, and C. S. Chandersekaran. A formal method for the 

identification of covert storage channels in source code. In IEEE Symposium on 
Security and Privacy, pages 46–48, 1987. 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
198 

[U.S93]  U.S. Department of Defense. A guide to understanding covert channel analysis of 
trusted system. (“Light Pink Book”) NCSC-TG-030, National Computer Security 
Center, November 1993. 

 
[Vir]  http://www.virtualbox.org/  
 
[VMwa]  http://www.vmware.com/esx/  
 
[VMwb]  http://www.vmware.com/products/workstation/  
 
[VMWc]  http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2007-4496. Last accessed 

Jan 31, 2011. 
 
[VMw07]  VMware Inc. Understanding full virtualization, paravirtualization, and hardware 

assist. Technical report, November 2007. 
 
[WJ10]  Zhi Wang and Xuxian Jiang. HyperSafe: A lightweight approach to provide 

lifetime hypervisor control-flow integrity. Report, Department of Computer 
Science, North Carolina State University, Raleigh, NC, USA, 2010. 

 
[WRa]  R. Wojtczu and J. Rutkowska. Attacking Intel trusted execution technology. 

http://invisiblethingslab.com/resources/bh09dc/AttackingIntelTXT-paper.pdf; 
accessed 31-Mar-2012. 

 
[WRb]  R. Wojtczu and J. Rutkowska. Attacking Intel TXT via SINIT code execution 

hijacking. 
http://www.invisiblethingslab.com/resources/2011/Attacking_Intel_TXT_via_SI
NIT_hijacking.pdf;  accessed 31-Mar-2012. 

[WRc]  R. Wojtczu and J. Rutkowska. Attacking SMM memory via Intel CPU cache 
poisoning. http://invisiblethingslab.com/resources/misc09/smm_cache_fun.pdf; 
accessed 31-Mar-2012. 

 
[WRd]  R. Wojtczu and J. Rutkowska. Following the white rabbit: Software attacks 

against Intel VT-d technology.  
 http://www.invisiblethingslab.com/resources/2011/SoftwareAttacksonIntelVT-

d.pdf ; accessed 31-Mar-2012. 
 
[WRT]  R.Wojtczu, J. Rutkowska, and A. Tereshkin. Another way to circumvent Intel 

trusted execution technology. 
 http://invisiblethingslab.com/resources/misc09/AnotherTXTAttack.pdf; accessed 
31-Mar-2012. 
 

[WU05]  W. Mark Vanfleet, R. William Beckwith, Dr. Ben Calloni, Jahn A. Luke, Dr. 
Carol Taylor and Gordon Uchenick. MILS:architecture for high assurance 
embedded computing. CrossTalk - The Journal of Defense Software Engineering, 
August 2005. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
199 

 
[Xena]  http://www.xen.org/  
 
[Xenb]  http://bugzilla.xensource.com/bugzilla/show_bug.cgi?id=1068  Last accessed Jan 

31, 2011. 
 
[ZAF08]  Jie Zhou and Jim Alves-Foss. Security policy refinement and enforcement for the 

design of multi-level secure systems. Journal of Computer Security, 16(2):107–
131, 2008. 

 
[ZL97]  Zakinthinos and Lee. A general theory of security properties. In IEEE Computer 

Society Symposium on Research in Security and Privacy, 1997. 
 
[ZLZZ08]  Hongzhong Zheng, Jiang Lin, Zhao Zhang, and Zhichun Zhu. Memory access 

scheduling schemes for systems with multicore processors. In ICPP, pages 406–
413, 2008. 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
200 

 ACRONYM LIST 18
 
ACPI   Advance Configuration  and Power Interface 
AMD   Advanced Micro Devices 
AMP   Asymmetric  MultiProcessor   
ARM   Advanced RISC Machines 
AP    Application Processors 
APIC   Advanced Programmable Interrupt Controllers 
ASID   Address Space IDentifier 
ATO   Atomic Unit 
BE    Broadband Engine 
BEI   Boadband Engine Interface Unit 
BED   Cell BE Distribution 
BIC   Bus Interface Controller 
BIU   Bus Interface Unit 
BLP   Bell-LaPadula 
BU    Branch Unit 
BUI   Bus Interface Unit 
BM   Buffer Manager 
BSP   BootStrap Processor 
C    Confidential 
CBEA   Cell Broadband Engine Architecture 
CCB   CHA Cluster Block 
CCSR   Configuration,  Control,  and Status Register 
CD    Cache Disabled 
CFX   Complex Integer Instruction 
CHA   Cryptographic Hardware Accelerators  
CHERI   Capability Hardware Enhanced RISC Instructions  
CIU   Core Interface Unit 
CMOS   Complementary Metal-Oxide-Semiconductor 
CPL   Current Privileged Level 
CPU   Central Processing Unit 
CR    Control Register 
CR3   Control Register 3 
CSDS   Center for Secure and Dependable Systems 
DCSR   Debug Control and Status Registers 
DDR   Double Data Rate  
DECAR   DECrementer Auto-Reload Register 
DECO   DEscriptor Controllers 
DEV   Device Exclusion  Vector 
DMA   Direct Memory Access 
DMAC   Direct Memory Access Controller 
DoD   Department of Defense 
DoS   Denial of Service 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
201 

DPAA   Data Path Acceleration Architecture 
DPL   Descriptor Privilege Level 
DRAM   Dynamic Random Access Memory 
DS    Data address Space 
DTLB   Data Translation Lookaside Buffer 
DXE   Data Examination Engine 
EA    Effective Address  
EAL   Evaluated Assurance Level 
ECC   Error Checking and Correction 
EE    External Enabled 
EIB   Element Interconnect Bus 
eLBC   enhanced Local Bus Controller 
EP    Event Policy 
EPCR   Embedded Processor Control Register 
EPT   Extended Page Table 
EPTP   EPT base Pointer 
EPU   Event Processing Unit  
ESX   Elastic Sky X 
FE    Floating-point Exception 
FIR   Fault Isolation Registers 
FlexIO   Frambus Flexible I/O 
FM    Frame Manager 
FPGA   Field Programmable Gate Array 
FPSCR   Floating-Point Status and Control Register 
FPU   Floating-Point Unit 
FSB   Front-Side Bus 
FCM   Flash Control Machine 
GAO   Government Accountability Office 
GART   Graphics Aperture Remapping Table 
GCS   Guarded Communication Subsystem 
GDT   Global Descriptor Table 
GDTR   Global Descriptor Table Register 
GP    General Purpose 
GPe   General protection exeception 
GPCM   General Purpose Chip select Machine 
GPIO   General Purpose Input/Output 
GS    Guest State 
GVM   Guest VM 
gPT   guest Page Tables 
HAMES   High Assurance Middleware for Embedded Systems  
HT    Hyper-Threading 
HVM   Hardware-assisted Virtual Machine 
HW   Hardware 
IAVMM   Lightweight VMM 
IC    Integrated Circuit 
ICR   Interrupt Command Register 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
202 

IDS   Intrusion Detection Systems 
IDT   Interrupt Descriptor Table 
IDTR   Interrupt Descriptor Table Register 
IF    Interrupt Flag 
IIC    Internal Interrupt Controller 
IO    Input/Output 
IOC   Input/Output Controller 
IOIF   Input/Output InterFace 
IOMMU   Input/Output Memory Management Unit 
IOPT   Input/Output Page Table 
IOST   Input/Output Segment Table 
IO Trans   Input/Output address Translation 
IPI    InterProcessor Interrupts 
IS    Instruction address Space 
IT    Information Technology 
IVOR   Interrupt Vector Offset Register 
JDKEK   Job Descriptor Key Encryption Key 
JTAG   Joint Test Action Group 
KES   Key Element Scanner 
LA    Logical Address 
LAW   Local Access Window 
LDT   Local Descriptor Table 
LDTR   Local Descriptor Table Register 
LIODN   Logical I/O Device Number 
LLES   Low Level Equivalency Sets 
LRU   Least Recently Used 
LS    Local Store 
LSU   Load/Store Unit 
L1    Level 1 cache 
L1CSR2   L1 Cache Control and Status Register 2  
L1D   L1 Data cache 
L1I    L1 Instruction cache 
L2    Level 2 cache 
L2CSR1   L2 Cache Control and Status Register 1 
MAVMM   Malware Analysis Virtual Machine Monitor 
MDR   Message Data Register 
ME   Machine check Enable 
MFC   Memory Flow Controller 
MIC   Memory Interface Controller 
MILS   Multiple Independent Levels of Security 
MLE   Measured Launch Environment 
MLS   Multi-Level Secure 
MLS-VM   Multi-Level Security Virtual Machine 
MMIO   Memory  Mapped Input/Output 
MMR   MILS Message Router 
MMU   Memory Management Unit 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
203 

MPH   Memory Performance Hog 
MPIC   Multicore Programmable Interrupt Controller 
MSI   Message Signaled Interrupts 
MSR   Machine State Register 
MSRs   Model-Specific Registers 
MTRR   Memory Type Range Registers 
NCU   NonCacheable Unit 
NEAT   Non-bypassable, Evaluatable, Always invoked and Tamperproof 
NAL   Nexus Aurora Link 
NMI   Non-Maskable Interrupt 
NOC   Network-on-a-Chip 
NPC   Nexus Port Controller  
NPT   Nested Page Tables 
NSA/NCSC   National Security Agency/National Computer Security Center 
NXC   Nexus Concentrator  
OCN   On-Chip Network 
OEM   Original Equipment Manufacturer 
OS    Operating System 
PAMU   Peripheral Access Management Units 
PAT   Page Attribute Table 
PC    Program Counter 
PCI   Peripheral Component Interconnect 
PCIe   Peripheral Component Interconnect express 
PCS   Partitioned Communication Service 
PME   Pattern Matching Engine 
PMH   Page Miss Handler 
PMFA   Pattern Matcher Frame Agent 
PML   Page Map Table 
POR   Power-On-Reset 
PPC   Power PC 
PPE   PowerPC Processor Element 
PPU   PowerPC Processor Unit 
PPSS   PowerPC Processor Storage Subsystem 
PRV   PerVasive Logic 
PS    Page Size 
PXU   Processor execution Units (without L1) 
QM   Queue Manager 
RA    Real Address 
RAS   Reliability, Availability, Serviceability 
RISC   Reduced Instruction Set Computing 
RMT   Replacement management Table 
RMI   RapidIO Message Unit 
RTIC   Real Time Integrity Checker 
S    Secret  
SCN   SPU Control 
SD/MMC   Secure Digital / MultiMedia Cards 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
204 

SEE   Security Encryption Engine  
SFP   SPU Floating-Point 
SFS   SPU Odd Fixed Point 
SFX   SPU Even Fixed-Point 
SIMD   Single Instruction, Multiple Data 
SIP    System-in-a-Package 
SIPI   Startup InterProcessor Interrupt 
SKINIT   Secure Kernel Init 
SLS   SPU Load and Store 
SMI   System Management Interrupt 
SMM   System Management Mode 
SMT   Simultaneous Multi-Threading   
SOC   System-on-a-Chip 
SPE   Synergistic Processing Elements 
SPI    Serial Peripheral Interface  
SPM   State Machine Policy 
SPU   Synergistic Processing Unit 
SRAM   Static Random-Access Memory 
SRE   Stateful Rule Engine 
sRIO   serial RapidIO 
SRM   Shared Resource Matrix 
STM   SMM Transfer Monitor 
SSC   SPU Channel 
SVM   Secure Virtual Machine 
SXU   Synergistic Execution Unit 
TCB   Trusted Computing Base 
TCSEC   Trusted Computer Security Evaluation Criteria 
TCU   Test Control Unit 
TDKEK   Trusted Descriptor Key Encryption Key 
TDSK   Trusted Descriptor Signing Key 
TKM   Token management Unit 
TLA   Trace Logic Array 
TLB   Translation Look aside Buffers  
TS    Top Secret 
TSS   Task-State Segment 
TPM   Trusted Platform  Module   
TVMM   Tiny Virtual Machine Monitor 
U    Unclassified 
UART   Universal Asynchronous Receiver/Transmitter 
UNCLE   User-mode Cache Lock Enabled 
UPM   User-Programmable Machines 
USB   Universal Serial Bus 
VA    Virtual Address 
VLIW   Very Long Instruction Word 
VM   Virtual Machine 
VMBR   VM-Based Rootkit 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
205 

VMCS   Virtual-Machine Control data Structure 
VMI   Virtual Machine Introspection 
VMM   Virtual Machine Monitor 
VMS   Virtual Machine Systems 
VMX   Virtual Machine Extensions 
VPID   Virtual Processor ID 
VPN   Virtual Private Network 
VT-x   Virtualization Technology 
XDR   Extreme Data Rate 
XIO   XDR I/O 
XCR   Extended Control Register 
10GE   10- Gigabit Ethernet Controller 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
206 

Appendix A. CBEA SPPORT DATA 
A.1 SPE MEMORY LOAD/STORE INSTRUCTIONS 
 

Table 53: SPE Memory Load/Store Instructions 

Name Mnemonic Required Version 
Load Quad Word lqd Yes 1.0 
Load Quad Word lqx Yes 1.0 
Load Quad Word lqa Yes 1.0 
Load Quad Word Relative lqr Yes 1.0 
Store Quad Word stqd Yes 1.0 
Store Quad Word stqx Yes 1.0 
Store Quad Word stqa Yes 1.0 
Store Quad Word Relative stqr Yes 1.0 
Generate Controls for Byte Insertion cbd Yes 1.0 
Generate Controls for Byte Insertion cbx Yes 1.0 
Generate Controls for Halfword Insertion chd Yes 1.0 
Generate Controls for Halfword Insertion chx Yes 1.0 
Generate Controls for Word Insertion cwd Yes 1.0 
Generate Controls for Word Insertion cwx Yes 1.0 
Generate Controls for Doubleword Insertion cdd Yes 1.0 
Generate Controls for Doubleword Insertion cdx Yes 1.0 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
207 

A.2 SPE CHANNELS 
 

Table 54: SPE Channels 

CH   Constant   R/W   Blk   Cap.   Purpose  
0  SPU_RdEventStat   R   B   1   Read SPU Event Status  
1  SPU_WrEventMask   W   N   1   Write Event Mask  
2  SPU_WrEventAck   W   N   1   Write Event Acknowledge  
3  SPU_RdSigNotify1   R   B   1   Read Signal Notification 1  
4  SPU_RdSigNotify2   R   B   1   Read Signal Notification 2  
5           
6           
7  SPU_WrDec   W   N   1   Write to SPU Decrementer  
8  SPU_RdDec   R   N   1   Read SPU Decrementer  
9  SPU_WrMSSyncReq   W   B   1   Write to MS Synchronization Register  
10           
11  SPU_RdEventMask   R   N   1   Read SPU Event Mask  
12  SPU_RdTagMask   R   N   1   Read SPU Tag Mask  
13  SPU_RdMachStat   R   N   1   Read SPU Machine Status  
14  SPU_WrSRR0   W   N   1   Write to Save/Restore Register  
15  SPU_RdSRR0   R   N   1   Read from Save/Restore Register  
16  MFC_LSA   W   N   1   MFC Local Storage Address  
17  MFC_EAH   W   N   1   MFC Effective Address High  
18  MFC_EAL   W   N   1   MFC Effective Address Low  
19  MFC_Size   W   N   1   MFC Transfer/List Size  
20  MFC_TagID   W   N   1   MFC Command Tag ID  
21  MFC_Cmd   W   B   16   MFC Class ID  
22  MFC_WrTagMask   W   N   1   Write to MFC Tag Group Mask  
23  MFC_WrTagUpdate   W   B   1   Write to MFC Tag Update Request  
24  MFC_RdTagStat   R   B   1   Read MFC Tag Group Status  
25  MFC_RdListStallStat   R   B   1   Read Stall-and-Notify Tag  
26 MFC_WrListStallAck   W   N   1   Write to Stall-and-Notify Ack  
27  MFC_RdAtomicStat   R   B   1   Read Atomic Command Status  
28  SPU_WrOutMbox   W   B   1   Write to SPU Outbound Mailbox  
29  SPU_RdInMbox   R   B   4   Read from SPU Inbound Mailbox  
30 SPU_WrOutIntrMbox   W   B   1   Write to SPU Outbound Interrupt  
31      

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
208 

A.3  SPE CONSTANT-FORMATION INSTRUCTIONS 
 

Table 55: SPE Constant-Formation Instructions 

Name Mnemonic Required Version 
Immediate Load Halfword   ilh  Yes 1.0 
Immediate Load Halfword Upper   ilhu  Yes 1.0 
Immediate Load Word   il  Yes 1.0 
Immediate Load Address   ila  Yes 1.0 
Immediate Or Halfword Lower   iohl  Yes 1.0 
Form Select Mask for Bytes Immediate   fsmbi  Yes 1.0 
Add Halfword   ah  Yes 1.0 

 

A.4 SPE INTEGER AND LOGICAL INSTRUCTIONS 
 

Table 56: SPE Integer and Logical Instructions 

Name Mnemonic Required Version 
Add Halfword   ah  Yes 1.0 
Add Halfword Immediate   ahi  Yes 1.0 
Add Word   aw  Yes 1.0 
Add Word Immediate   awi  Yes 1.0 
Subtract from Halfword   sfh  Yes 1.0 
Subtract from Halfword Immediate   sfhi  Yes 1.0 
Subtract from Word   sf  Yes 1.0 
Subtract from Word Immediate   sfi  Yes 1.0 
Add Extended   addx  Yes 1.0 
Carry Generate   cg  Yes 1.0 
Carry Generate Extended   cgx  Yes 1.0 
Subtract from Extended   sfx  Yes 1.0 
Borrow Generate   bg  Yes 1.0 
Borrow Generate Extended   bgx  Yes 1.0 
Multiply   mpy  Yes 1.0 
Multiply Unsigned   mpyu  Yes 1.0 
Multiply Immediate   mpyi  Yes 1.0 
Multiply Unsigned Immediate   mpyui  Yes 1.0 
Multiply and Add   mpya  Yes 1.0 
Multiply High   mpyh  Yes 1.0 
Multiply and Shift Right   mpys  Yes 1.0 
Multiply High High   mpyhh  Yes 1.0 
Multiply High High and Add   myphha  Yes 1.0 
Multiply High High Unsigned   mpyhhu  Yes 1.0 
Multiply High High Unsigned   mpyhhau  Yes 1.0 

Continued on next page 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
209 

Table 56– continued from previous page 
Count Leading Zeros   clz  Yes 1.0 
Count Ones in Bytes   cntb  Yes 1.0 
Form Select Mask for Bytes   fsmb  Yes 1.0 
Form Select Mask for Halfwords   fsmh  Yes 1.0 
Form Select Mask for Words   fsm  Yes 1.0 
Gather Bits from Bytes   gbb  Yes 1.0 
Gather Bits from Halfwords   gbh  Yes 1.0 
Gather Bits from Words   gb  Yes 1.0 
Average Bytes   avgb  Yes 1.0 
Absolute Differences of Bytes   absdb  Yes 1.0 
Sum Bytes into Halfwords   sumb  Yes 1.0 
Extend Sign Byte to Halfword   xsbh  Yes 1.0 
Extend Sign Halfword to Word   xsbw  Yes 1.0 
Extend Sign Word to Doubleword   xsbd  Yes 1.0 
And   and  Yes 1.0 
And with Complement   andc  Yes 1.0 
And Byte Immediate   andbi  Yes 1.0 
And Halfword Immediate   andhi  Yes 1.0 
And Word Immediate   andi  Yes 1.0 
Or   or  Yes 1.0 
Or with Complement   orc  Yes 1.0 
Or Byte Immediate   orbi  Yes 1.0 
Or Halfword Immediate   orhi  Yes 1.0 
Or Word Immediate   ori  Yes 1.0 
Or Across   orx  Yes 1.0 
Exclusive Or   xor  Yes 1.0 
Exclusive Or Byte Immediate   xorbi  Yes 1.0 
Exclusive Or Halfword Immediate   xorhi  Yes 1.0 
Exclusive Or Word Immediate   xori  Yes 1.0 
Nand   nand  Yes 1.0 
Nor   nor  Yes 1.0 
Equivalent   eqv  Yes 1.0 
Select Bits   selb  Yes 1.0 
Shuffle Bytes   shufb  Yes 1.0 

 

A.5 SPE HINT-FOR-BRANCH INSTRUCTIONS 
 

Table 57: SPE Hint-for-Branch Instructions 

Name Mnemonic Required Version 
Hint for Branch   hbr  Yes 1.0 
Hint for Branch   hbra  Yes 1.0 
Hint for Branch Relative   hbrr  Yes 1.0 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
210 

A.6 SPE SHIFT AND ROTATE INSTRUCTIONS 
 

Table 58: SPE Shift and Rotate Instructions 

Name Mnemonic Required Version 
Shift Left Halfword   shlh  Yes 1.0 
Shift Left Halfword Immediate   shlhi  Yes 1.0 
Shift Left Word   shl  Yes 1.0 
Shift Left Word Immediate   shli  Yes 1.0 
Shift Left Quadword by Bits   shlqbi  Yes 1.0 
Shift Left Quadword by Bits Immediate   shlqbii  Yes 1.0 
Shift Left Quadword by Bytes   shlqby  Yes 1.0 
Shift Left Quadword by Bytes Immediate   shlquyi  Yes 1.0 
Shift Left Quadword by Bytes from Bit Shift Count   shlqbybi  Yes 1.0 
Rotate Halfword   roth  Yes 1.0 
Rotate Halfword Immediate   rothi  Yes 1.0 
Rotate Word   rot  Yes 1.0 
Rotate Word Immediate   roti  Yes 1.0 
Rotate Quadword by Bytes   rotqby  Yes 1.0 
Rotate Quadword by Bytes Immediate   rotqbyi  Yes 1.0 
Rotate Quadword by Bytes from Bit Shift Count   rotqbybi  Yes 1.0 
Rotate Quadword by Bits   rotqbi  Yes 1.0 
Rotate Quadword by Bits Immediate   rotqbii  Yes 1.0 
Rotate and Mask Halfword   rothm  Yes 1.0 
Rotate and Mask Halfword Immediate   rothmi  Yes 1.0 
Rotate and Mask Word   rotm  Yes 1.0 
Rotate and Mask Word Immediate   rotmi  Yes 1.0 
Rotate and Mask Quadword by Bytes   rotqmby  Yes 1.0 
Rotate and Mask Quadword by Bytes Immediate   rotqmbyi  Yes 1.0 
Rotate and Mask Quadword Bytes from Bit Shift Count   rotqmbybi  Yes 1.0 
Rotate and Mask Quadword by Bits   rotqmbi  Yes 1.0 
Rotate and Mask Quadword by Bits Immediate   rotqmbii  Yes 1.0 
Rotate and Mask Algebraic Halfword   rotmah  Yes 1.0 
Rotate and Mask Algebraic Halfword Immediate   rotmahi  Yes 1.0 
Rotate and Mask Algebraic Word   rotma  Yes 1.0 
Rotate and Mask Algebraic Word Immediate   rotmai  Yes 1.0 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
211 

 

A.7 SPE FLOATING-POINT INSTRUCTIONS 
 

Table 59: SPE Floating-Point Instructions 

Name Mnemonic Required Version 
Floating Add   fa  Yes 1.0 
Double Floating Add   dfa  Yes 1.0 
Floating Subtract   fs  Yes 1.0 
Double Floating Subtract   dfs  Yes 1.0 
Floating Multiply   fm  Yes 1.0 
Double Floating Multiply   dfm  Yes 1.0 
Floating Multiply and Add   fma  Yes 1.0 
Double Floating Multiply and Add   dfma  Yes 1.0 
Floating Negative Multiply and Subtract   fnms  Yes 1.0 
Double Floating Negative Multiply and Subtract   dfnms  Yes 1.0 
Floating Multiply and Subtract   fms  Yes 1.0 
Double Floating Multiply and Subtract   dfms  Yes 1.0 
Double Floating Negative Multiply and Add   dfnma  Yes 1.0 
Floating Reciprocal Estimate   frest  Yes 1.0 
Floating Reciprocal Absolute Square Root Estimate   frsqest  Yes 1.0 
Floating Interpolate   fi  Yes 1.0 
Convert Signed Integer to Floating   csflt  Yes 1.0 
Convert Floating to Signed Integer   cflts  Yes 1.0 
Convert Unsigned Integer to Floating   cufit  Yes 1.0 
Convert Floating to Unsigned Integer   cfltu  Yes 1.0 
Floating Round Double to Single   frds  Yes 1.0 
Floating Extend Single to Double   fesd  Yes 1.0 
Double Floating Compare Equal   dfceq  No 1.2 
Double Floating Compare Magnitude Equal   dfcmeq  No 1.2 
Double Floating Compare Greater Than   dfcgt  No 1.2 
Double Floating Compare Magnitude Greater Than   dfcmgt  No 1.2 
Double Floating Test Special Value   dftsv  No 1.2 
Floating Compare Equal   fceq  Yes 1.0 
Floating Compare Magnitude Equal   fcmeq  Yes 1.0 
Floating Compare Greater Than   fcgt  Yes 1.0 
Floating Compare Magnitude Greater Than   fcmgt  Yes 1.0 
Floating-Point Status and Control Register Write   fscrwr  Yes 1.0 
Floating-Point Status and Control Register Read   fscrrd  Yes 1.0 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
212 

Appendix B. P4080 Support Data 
 

B.1 E500MC PROCESSOR INSTRUCTIONS 
 

B.1.1  Branch and Flow Instructions 
 

Table 60: Branch and Flow Instructions 

Instruction Mnemonic Privilege Level 
Branch   b (ba bl bla)  User 
Branch Conditional   bc (bca bcl bcla)  User 
Branch Conditional to Link Register   bclr (bclrl)  User 
Branch Conditional to Count Register   bcctr (bcctrl)  User 
Integer Select   isel  User 

 

B.1.2 Floating-Point Instructions 
 

Table 61: Floating-Point Instructions 

Instruction Mnemonic Privilege Level 
Floating Absolute Value   fabs[.]  User 
Floating Move Register   fmr[.]  User 
Floating Negative Absolute Value   fnabs[.]  User 
Floating Negative   fneg[.]  User 

 

B.1.3 Floating-Point Status and Control Register Instructions 
 

Table 62: Floating-Point Status and Control Register Instructions 

Instruction Mnemonic Privilege Level 
Move from FPSCR   mffs[.]  User 
Move to Condition Register from FPSCR   mcrfs  User 
Move to FPSCR Bit 0   mtfsb0[.]  User 
Move to FPSCR Bit 1   mtfsb1[.]  User 
Move to FPSCR Fields   mtfsf[.]  User 
Move to FPSCR Fields Immediate   mtfsfi[.]  User 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
213 

B.1.4 Floating-Point Arithmetic Instructions 
 

Table 63: Floating-Point Arithmetic Instructions 

Instruction Mnemonic Privilege Level 
Floating Add   fadd[.]  User 
Floating Add Single   fadds[.]  User 
Floating Divide   fdiv[.]  User 
Floating Divide Single   fdivs[.]  User 
Floating Multiply   fmul[.]  User 
Floating Multiply Single   fmuls[.]  User 
Floating Reciprocal Estimate Single   fres[.]  User 
Floating Reciprocal Square Root Estimate   frsqrte[.]  User 
Floating Select   fsel[.]  User 
Floating Subtract   fsub[.]  User 
Floating Subtract Single   fsubs[.]  User 
Floating Multiply-Add   fmadd[.]  User 
Floating Multiply-Add Single   fmadds[.]  User 
Floating Multiply-Subtract   fmsub[.]  User 
Floating Multiply-Subtract Single   fmsubs[.]  User 
Floating Negative Multiply-Add   fnmadd[.]  User 
Floating Negative Multiply-Add Single   fnmadds[.]  User 
Floating Negative Multiply-Subtract   fnsub[.]  User 
Floating Negative Multiply-Subtract Single   fnmadds[.]  User 

 

B.1.5 Floating-Point Compare Instructions 
 

Table 64: Floating-Point Compare Instructions 

Instruction Mnemonic Privilege Level 
Floating Compare Ordered   fcmpo   User  
Floating Compare Unordered   fcmpu   User  

 

B.1.6 Floating-Point Rounding and Conversion Instructions 
 

Table 65: Floating-Point Rounding and Conversion Instructions 

Instruction Mnemonic Privilege Level 
Floating Convert to Integer Word   fctiw[.]  User 
Floating Convert to Integer Word and Round to Zero   fctiwz[.]  User 
Floating Round to Single-Precision   frsp[.]  User 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
214 

B.1.7  Integer Instructions 
 

Table 66: Simple Integer Instructions 

Instruction Mnemonic Privilege Level 
Add Carrying   addc[o][.]  User 
Add Extended   adde[o][.]  User 
Add Immediate   addi  User 
Add Immediate Carrying   addic  User 
Add Immediate Carrying and Record   addic.  User 
Add Immediate Shifted   addis  User 
Add to Minus One Extended   addme[o][.]  User 
Add to Zero Extended   addze[o][.]  User 
Divide Word   divw[o][.]  User 
Divide Word Unsigned   divwu[o][.]  User 
Multiply High Word   mulhw[.]  User 
Multiply High Word Unsigned   mulhwu[.]  User 
Multiple Low Immediate   mulli  User 
Multiple Low Word   mullw[o][.]  User 
Negate   neg[o][.]  User 
Subtract From   subf[o][.]  User 
Subtract from Carrying   subfc[o][.]  User 
Subtract from Extended   subfe[o][.]  User 
Subtract from Immediate Carrying   subfic  User 
Subtract from Minus One Extended   subfme[o][.]  User 
Subtract from Zero Extended   subfze[o][.]  User 
Compare   cmp  User 
Compare Immediate   cmpi  User 
Compare Logical   cmpl  User 
Compare Logical Immediate   cmpli  User 
AND   and[.]  User 
AND Immediate   andi.  User 
AND Immediate Shifted   andis.  User 
AND with Complement   andc[.]  User 
Count Leading Zeros Word   cntlzw[.]  User 
Equivalent   eqv[.]  User 
Extend Sign Byte   extsb[.]  User 
Extend Sign Half Word   extsh[.]  User 
NAND   nand[.]  User 
NOR   nor[.]  User 
OR   or[.]  User 
OR Immediate   ori  User 
OR Immediate Shifted   oris  User 
OR with Complement   orc[.]  User 
XOR   xor[.]  User 
XOR Immediate   xori  User 
XOR Immediate Shifted   xoris  User 
Rotate Left Word Immediate then AND with Mask   rlwinm[.]  User 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
215 

Instruction Mnemonic Privilege Level 
Rotate Left Word then AND with Mask   rlwnm[.]  User 
Rotate Left Word Immediate then Mask Insert   rlwimi[.]  User 
Shift Left Word   slw[.]  User 
Shift Right Word   srw[.]  User 
Shift Right Algebraic Word Immediate   srawi[.]  User 
Shift Right Algebraic Word   sraw[.]  User 

 

B.2 REGISTERS 

B.2.1 General Purpose Registers 
 

Table 67: General Purpose Registers 

Register Mnemonic SPR # Privilege Level 
General Purpose Registers   GPR0 - GPR31   User 
Integer Exception Register   XER  1 User 
 

B.2.2 Floating-Point Registers 
     

Table 68: Floating-Point Registers 

Register Mnemonic SPR # Privilege Level 
Floating-Point Registers   FPR0 - FPR31    User 
Floating-Point Status and Control Register   FPSCR    User 

  

B.2.3 Branch Registers 
     

Table 69: Branch Registers 

Register Mnemonic SPR # Privilege Level 
Condition Register   CR   User 
Link Register   LR  8 User 
Count Register   CTR  9 User 

 
 

B.2.4 Branch Unit Control and Status Register 
  

Table 70: Branch Unit Control and Status Register 

Register Mnemonic SPR # Privilege Level 
Branch unit control and status register   BUCSR  1013 Hypervisor 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
216 

B.2.5  Hardware Implementation Dependent Register 
     

Table 71: Hardware Implementation Dependent Register 

Register Mnemonic SPR # Privilege Level 
Hardware implementation dependent register 0   HID0  1008 Hypervisor 

 

B.2.6  L1 Cache Registers 
      

Table 72: L1 Cache Registers 

Register Mnemonic SPR # Privilege Level 
L1 cache configuration register 0   L1CFG0  515 User RO 
L1 cache configuration register 1   L1CFG1  516 User RO 
L1 cache control and status register 0   L1CSR0  1010 Hypervisor 
L1 cache control and status register 1   L1CSR1  1011 Hypervisor 
L1 cache control and status register 2   L1CSR2  606 Hypervisor 
 

B.2.7  L2 Cache Registers 
    

Table 73: L2 Cache Registers 

Register Mnemonic SPR # Privilege Level 
L2 cache configuration register 0   L2CFG0  519 User RO 
L2 cache control and status register 0   L2CSR0  1017 Hypervisor 
L2 cache control and status register 1   L2CSR1  1018 Hypervisor 
L2 cache error disable   L2ERRDIS  725 Hypervisor 
L2 cache error detect   L2ERRDET  991 Hypervisor 
L2 cache error interrupt enable   L2ERRINTEN  720 Hypervisor 
L2 cache error control   L2ERRCTL  724 Hypervisor 
L2 cache error address   L2ERRADDR  722 Hypervisor 
L2 cache error extended address   L2ERREADDR  723 Hypervisor 
L2 cache error capture data low   L2CAPTDATALO  989 Hypervisor 
L2 cache error capture data high   L2CAPTDATAHI  988 Hypervisor 
L2 cache error capture ECC syndrome   L2CAPTECC  990 Hypervisor 
L2 cache error attribute   L2ERRATTR  721 Hypervisor 
L2 cache error injection control   L2ERRINJCTL  987 Hypervisor 
L2 cache error injection mask low   L2ERRINJLO  986 Hypervisor 
L2 cache error injection mask high   L2ERRINJHI  985 Hypervisor 

    



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
217 

B.2.8 MMU Registers 
  

Table 74: MMU Registers 

Register Mnemonic SPR # Privilege Level 
Logical Partition ID register   LPIDR  338 Hypervisor 
Process ID register   PID  48 Guest supervisor 
MMU control and status register 0   MMUCSR0  1012 Hypervisor 
MMU configuration register   MMUCFG  1015 Hypervisor RO 
TLB configuration register 0   TLB0CFG  688 Hypervisor RO 
TLB configuration register 1   TLB1CFG  689 Hypervisor RO 
MMU assist register 0   MAS0  624 Guest supervisor 
MMU assist register 1   MAS1  625 Guest supervisor 
MMU assist register 2   MAS2  626 Guest supervisor 
MMU assist register 3   MAS3  627 Guest supervisor 
MMU assist register 4   MAS4  628 Guest supervisor 
MMU assist register 5   MAS5  339 Hypervisor 
MMU assist register 6   MAS6  630 Guest supervisor 
MMU assist register 7   MAS7  944 Guest supervisor 
MMU assist register 8   MAS8  341 Hypervisor 
External PID load context   EPLC  947 Guest supervisor 
External PID store context   EPSC  948 Guest supervisor 

 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
218 

B.2.9 Performance Monitoring Registers 
      

Table 75: Performance Monitoring Registers 

Register Mnemonic PMR # Privilege Level 
*Global control register 0   PMGC0  400 Guest Supervisor 

 UPMGC0  384 User RO 
*Performance monitor counter 0   PMC0  16 Guest Supervisor 

 UPMC0  0 User RO 
*Performance monitor counter 1   PMC1  17 Guest Supervisor 

 UPMC1  1 User RO 
*Performance monitor counter 2   PMC2  18 Guest Supervisor 

 UPMC2  2 User RO 
*Performance monitor counter 3   PMC3  19 Guest Supervisor 

 UPMC2  3 User RO 
*Performance monitor local control a0   PMLCa0  144 Guest Supervisor 

 UPMLCa0  128 User RO 
*Performance monitor local control a1   PMLCa1  145 Guest Supervisor 

 UPMLCa1  129 User RO 
*Performance monitor local control a2   PMLCa2  146 Guest Supervisor 

 UPMLCa2  130 User RO 
*Performance monitor local control a3   PMLCa3  147 Guest Supervisor 

 UPMLCa3  131 User RO 
*Performance monitor local control b0   PMLCb0  272 Guest Supervisor 

 UPMLCb0  256 User RO 
*Performance monitor local control b1   PMLCb1  273 Guest Supervisor 

 UPMLCb1  257 User RO 
*Performance monitor local control b2   PMLCb2  275 Guest Supervisor 

 UPMLCb2  258 User RO 
*Performance monitor local control b3   PMLCb3  276 Guest Supervisor 

 UPMLCb3  259 User RO 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
219 

 

Appendix C. List of Instructions that Cause VM Exits 
  

Table 76: All the instructions that cause VM Exits 

 
Instruction that causes a VM Exit   Description and Conditions  
CPUID, VMCALL, VMCLEAR, 
VMLAUNCH, VMPRTLD, 
VMPTRST, VMREAD, 
VMRESUME, VMWRITE, 
VMXOFF, AND VMXON  

When they are executed in VMX non-root operation.  

INVEPT, INVD, INVVPID  When they are executed in VMX non-root operation. 
GETSEC  If CR4.SMXE[Bit 14] = 1.  
XSAVE/XRSTOR/XSAVEOPT  not supported in Intel Core i7-860.  
XGETBV  Specifying a reserved or unimplemented XCR in ECX causes a 

general protection exception  
XSETBV  If CR4.OSXSAVE[Bit 18] = 1.  
CTS  If CR0.TS is set in both the CR0 guest/host mask and the CR0 

read shadow.  
CLTS  If CR0.TS in both the CR0 guest/host mask and the CR0 read 

shadow does not match.  
HLT  If the “HLT exiting” VM-execution control is 1.  
IN, INS/INSB/INSW/INSD, OUT, 
OUTS/OUTSB/OUTSW/OUTSD  

Either “unconditional I/O exiting” or “use I/O bitmaps” VM-
execution control is 1.  

INVLPG  If the “INVLPG exiting” VM-execution control is 1.  
LGDT, LIDT, LLDT, LTR, SGDT, 
SIDT, SLDT, STR  

If the “descriptor-table exiting” VM-execution control is 1.  

LMSW, SMSW  If CR0.PE are set in both the CR0 guest/mask and the source 
operand but clear in CR0 read shadow.  

MONITOR  If the “MONITOR exiting” VM-execution control is 1.  
MOV from/to CR3/CR8  If the “CR3-/CR8-store/load exiting” VM-execution control is 1.  
MOV to CR0/CR4  If the value to be set in CR0/CR4 guest/host mask doesn’t match 

with the corresponding value in CR0/CR4 read shadow.  
MOV DR  If the “MOV-DR exiting” VM-execution control is 1.  
MWAIT  If the “MWAIT exiting” VM-execution control is 1.  
PAUSE  Depends on “PAUSE exiting” and “PAUSE-loop exiting”  
RDMSR, WRMSR  When “use MSR bitmaps” VM-execution control is 1, if the 

value of ECX is in neither of the ranges covered by the bitmaps 
or if the appropriate bit in the MSR bitmaps is 1.  

RDPMC  If the “RDPMC exiting” VM-execution control is 1.  
RDTSC  If the “RDTSC exiting” VM-execution control is 1.  
RDTSCP  If the “RDTSC exiting” and “enable RDTSCP” VM-execution 

control are both 1.  
RSM  If executed in SMM.  



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
220 

Instruction that causes a VM Exit   Description and Conditions  
WBINVD  If the “WBINVD exiting" VM-execution control is 1.  
CFLUSH, ENTER, MASKMOVQ, 
MASKMOVDQU, PREFETCH  

If the “virtualize APIC accesses” VM-execution control is 1 and 
the instruction would access the APIC-access page.  

INT3, INTO, BOUND, UD2  The exceptions are selected in the exception bitmaps.  
Task Switch instructions such as 
CALL, INT n, JMP, NMI, IRET  

Task switches are not allowed in VMX non-root operation.  

SYSCALL/SYSENTER  SYSCALL is only supported in 64-bit mode 
MOV SS, POP SS, STI  If the “use TPR shadow” and “virtualize APIC accesses” VM-

execution control are both 1.  
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
221 

Appendix D. Intel Instruction Summary 
 
The following table is a list of the Intel instruction set that may cause vulnerabilities and is 

presented as an extension of Robin’s work [Rob]). 
 

Table 77: Intel Instruction Extension Summary 
Extension Name Year 

Introduced 
Number of 

Instructions 
New features to the IA-32(e) architecture 

SSE3 (Streaming 
SIMD Extensions 3)  

2004, with 
Pentium 4 
processor 
which support 
Hyper-
Threading 
Technology  

13 • One instruction that improves x87 FPU floating-
point to integer conversion.  

• One instruction that provides a specialized 128-bit 
unaligned data load.  

• Two instructions that provide packed 
addition/subtraction.  

• Four instructions that provide horizontal 
addition/subtraction.  

• Three instructions that enhance 
LOAD/MOVE/DUPLICATE performance.  

• Two instructions that improve synchronization 
between multi-threaded agents.  

XSAVE instructions    4 • Two instructions to save or restore processor 
extended stated to or from memory.  

• Two instructions that for read and write the state of 
the extended control register (XCR0) which is a 
64-bit register specifies the set of processor states 
that the operating system enables on that processor.  

AVX (Advanced 
Vector Extensions)  

2010, with the 
Sandy Bridge 
processor 
family.  

192 for 
AVX, 20 for 

FMA 

• Support for 256-bit wide vectors and SIMD 
register set (YMM0-YMM7 in operating modes, 
YMM0-YMM15 in 64-bit mode).  

• Instruction syntax support for generalized three-
oprand syntax.  

• 39 256-bit data processing instructions.  
• 18 new data processing instructions that operate on 

256-bit vectors.  
• Using a new VEX-prefix in instruction encoding 

scheme.  
• FMA extensions and enhanced floating compare 

instructions add support for IEEE-754-2008 
standard.  

VMX (Virtual 
Machine Extensions)  

To support 
virtualization 
of processor 
hardware for 
multiple 
software 
environments  

12    
• Five instructions are to maintain the VMCS.  
• Seven instructions are  to manage the VMX.  

 
The following tables are a list of additional Intel instruction set that may cause vulnerabilities 

and is presented as an extension of Robin’s work [Rob]). 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
222 

 
Table 78: Instructions that may Potentially Cause Vulnerabilities 

Instruction Extension Class Description Sensitive Privilege Reason 
MONITOR   SSE3  sync  Set Up Monitor Address   Y  N  State of the 

Machine 
MWAIT   SSE3  sync  Monitor Wait   Y  N  State of the 

Machine 
INVEPT   vmx     Invalidate Translations 

Derived from EPT  
 Y  Y  memory system  

INVVPID   vmx     Invalidate Translations 
Based on VPID  

 Y  Y  memory system  

VMCALL   vmx     Call to VM Monitor      Protection 
system  

VMCLEAR   vmx     Clear Virtual-Machine 
Control Structure  

 Y  Y  sensitive 
structure  

VMLAUNCH   vmx     Launch Virtual Machine   Y  Y  state of the VM  
VMPTRLD   vmx     Load Pointer to Virtual-

Machine Control Structure  
 Y  Y  sensitive 

structure  
VMPTRST   vmx     Store Pointer to Virtual-

Machine Control Structure  
 Y  Y  sensitive 

structure  
VMREAD   vmx     Read Field from Virtual-

Machine Control Structure  
 Y  Y  sensitive 

structure  
VMRESUME   vmx     Resume Virtual Machine   Y  Y  state of the VM  
VMWRITE   vmx     Write Field to Virtual-

Machine Control Structure  
 Y  Y  sensitive 

structure  
VMXOFF   vmx     Leave VMX Operation   Y  Y  state of the 

machine  
VMXON   vmx     Enter VMX Operation   Y  Y  state of the 

machine  
XSAVEOPT   AVX     Save processer extended 

states optimized  
 Y  N  Sensitive 

registers 
XSAVE   XSAVE     Save processor extended 

states to memory  
 Y  N  State of the 

machine 
XRSTOR   XSAVE     Restore processor 

extended states form 
memory  

 Y  N  State of the 
machine 

XGETBV   XSAVE     Reads the state of an 
extended control register  

 Y  N  Sensitive 
registers 

XSETBV   XSAVE     Writes the state of an 
extended control register  

 Y  Y  Sensitive 
registers 

SYSCALL   64bit     Fast call to privilege level 
0 system procedures  

 Y  N  Protection 
system 

SYSENTER   64bit     Fast call to privilege level 
0 system procedures  

 Y  N  Protection 
system 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
223 

Table 79: Additional Instructions that may Cause Vulnerabilities 

Instructions   Reason  
 

CALL   May reference the privilege level of a program or procedure to call. 
INT n   Generate a call to exception handler or interrupt. 

IRET/ IRETD   Return from an exception or interrupt handler back to a procedure or 
program. It examines the privilege level of procedures. 

JMP   Call another procedure but not return. 
LAR   Load the access rights form the segment descriptor.  
LSL   Load the unscrambled segment limit from the segment descriptor. 

MONITOR   Set Up Monitor Address.  
MOV   May change the sensitive registers and segment registers. 

MWAIT   Allow the processor to stop executing instructions and enter an 
implementation-dependent optimized state. 

POP   may reference the privilege level of segment selector and segment descriptor.  
POPF/ POPFD   Pop values from stack and stores the values into EFLAGS register.  

PUSH   May access the privilege level of some registers. 
PUSHF/ 
PUFHFD  

 Push the values of EFLAGS register into stack.  

RET   Return the control to the return address on the top of the stack.  
RSM   Return control from SMM (system management mode) to program or 

procedure. 
SGDT   Store the contents of the global descriptor table register. 
SIDT   Store the contents of the Interrupt descriptor table register. 
SLDT   Store the contents of the local descriptor table register. 
SMSW   Store some bits of CR0 to memory location or general purpose register.  

STR   Store the segment selector from task register.  
SYSCALL   Fast call to Privilege level 0 system procedures.  

SYSENTER   Fast call to Privilege level 0 system procedures. 
VERR   Query the current privilege level of code or data to find out if it is readable 

or not. 
VERW   Query the current privilege level of code or data to find out if it is writable or 

not. 
XRSTOR   Restore processor extended states from memory. 
XSAVE   Save the processor extended states to memory. 

XSAVEOPT   Save processer extended states optimized. 
XGETBV   Reads the XCR (Extended Control Register). 

 
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
224 

Appendix E. A List of Terminology Comparison between Intel 
and AMD 
 
Table 80 lists all the terminology differences between Intel VT-x and AMD-V. 
             

Table 80: Comparison of Common Terms between Intel VT-x and AMD-V 

 Intel VT-x   AMD-V   Description  
VMX  SVM  Generic term used for extensions associated with 

VMs  
root/non-root  host/guest  The cpu operation mode  
VMCS  VMCB  VM Control data structure describing the behavior 

and state of the host and the guest  
current-VMCS  RAX  Register containing physical address of current VM 

control data structure 
VMPTRLD, 
VMLAUNCH  

VMRUN RAX  Load VM control structure and start a guest  

VMREAD, 
VMWRITE  

VMLOAD, 
VMSAVE  

Read/Write guest state information from/to the 
VMM  

VMCALL  VMMCALL  Explicitly exit to the VMM  
VM Exit  #VMEXIT  Event causing return to the VMM  
Extended Page Table  Nested Page 

Table  
Second-Level address translation  

EPTP  nCR3  Register contains entry address of EPT/NPT  
 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
225 

Appendix F. A List of Virtualized Resource 
  

System software virtualizes resources for each VM by constructing a specific VMCS. The 
VMCS data are organized into different fields. Every field of the VMCS is associated with a 32-
bit encoding value, which is provided in an operand to VMREAD or VMWRITE when software 
wishes to read or write that field. All the virtualized resources are listed as follows in terms of 
different characteristics. 

 
VIRTUALIZED RESOURCES{ 

SEGMENTS: 
GUEST/HOST ES/CS/SS/DS/FS/GS/TR SELECTOR, 
GUEST LDTR SELECTOR, 
GUEST ES/CS/SS/DS/FS/GS/LDTR/TR/GDTR/IDTR BASE, 
HOST FS/GS/TR/GDTR/IDTR BASE, 
GUEST ES/CS/SS/DS/FS/GS/LDRR/TR/GDTR/IDTR LIMIT, 
GUEST ES/CS/SS/DS/FS/GS/LDTR/TR ACCESS RIGHTS, 

 
VMCS: 

VIRTUAL PROCESSOR IDENTIFIER (VPID), 
EXECUTIVE VMCS POINTER, 
VMCS LINK POINTER, 
VIRTUAL APIC PAGE ADDRESS, 
APIC ACCESS ADDRESS, 

 
PIN-BASED VM-EXECUTION CONTROLS, 
PRIMARY PROCESSOR-BASED VM-EXECUTION CONTROLS, 
SECONDARY PROCESSOR-BASED VM-EXECUTION CONTROLS, 

 
MEMORY: 

EPT POINTER, 
GUEST PDPTE0/PDPTE1/PDPTE2/PDPTE3, 
GUEST/HOST IA32 PAT, 
GUEST PHYSICAL ADDRESS, 
GUEST LINEAR ADDRESS, 

 
DEBUG FACILITIES: 

GUEST IA32 DEBUG CONTROLLER, 
GUEST DR7, 
GUEST PENDING DEBUG EXCEPTIONS, 

 
VM ENTRY/EXIT: 

VM ENTRY MSR LOAD ADDRESS, 
VM-ENTRY CONTROLS, 
VM-ENTRY MSR LOAD COUNT, 



APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 
226 

VM-ENTRY INTERRUPTION-INFORMATION FIELD, 
VM-ENTRY INTERRUPTION ERROR CODE, 

 
VM EXIT MSR LOAD/STORE ADDRESS, 
VM-EXIT CONTROLS, 
VM-EXIT MSR STORE/LOAD COUNT, 
VM-EXIT REASON, 
VM-EXIT INTERRUPTION INFORMATION, 
VM-EXIT INTERRUPTION ERROR CODE, 
VM-EXIT INSTRUCTION INFORMATION, 
 
EXIT QUALIFICATION, 

 
EXCEPTIONS: 

EXCEPTION BITMAP, 
PAGE-FAULT ERROR-CODE MASK, 
PAGE-FAULT ERROR-CODE MATCH, 
 
VM-INSTRUCTION ERROR, 
 
IDT VECTORING INFORMATION FIELD, 
IDT VECTORING ERROR CODE, 

 
CONTROL REGISTERS: 

CR0/CR4 GUEST/HOST MASK, 
CR0/CR4 READ SHADOW, 
CR3 TARGET VALUE0/VALUE1/VALUE2/VALUE3, 
CR3 TARGET COUNT, 
GUEST/HOST CR0/CR3/CR4, 
TPR THRESHOLD, 

 
OTHERS: 

GUEST RSP, 
GUEST RIP, 
GUEST RFLAGS, 
GUEST/HOST IA32 EFER, 
GUEST/HOST IA32 SYSENTER ESP, 
GUEST/HOST IA32 SYSENTER EIP, 
GUEST/HOST IA32 SYSENTER CS, 
ADDRESS OF IO BITMAP A/B, 
GUEST INTERRUPTIBILITY STATE, 
GUEST ACTIVITY STATE, 
TSC OFFSET, 

} 


	List of Figures
	List of Tables
	1  Introduction and Background
	1.1 Introduction
	1.2 MILS
	1.2.1 MILS Principles
	1.2.1.1 Multicore MILS


	1.3 The tasks
	1.4 Conclusion

	2  Introduction
	2.1 Why use Multicore Architectures for Secure Systems
	2.2 Project Objectives
	2.3 Part II Overview

	3  Analyzing Multicore and Virtual Machine Architectures
	3.1 The Basics of Single-core Information Flow Analysis
	3.2 A Historical Review of Multicore Architectures
	3.2.1 From Unicore to Multicore Architectures

	3.3 Virtual Machine Monitor Architectures
	3.4 Evaluating Multicore and Virtual Machine Vulnerabilities
	3.5 Concerns about Information Flow Analyses of Multicore and Virtual Machine Architectures

	4  Defining a Framework for Multicore Information Flow Analysis
	4.1 A Hypothetical Reference Architecture
	4.2 Applying the Framework to the Reference Architecture
	4.2.1 Identify Hardware Components
	4.2.2 Information Flow Analysis
	4.2.2.1 Communication Bus
	4.2.2.2 Processor Cores:
	4.2.2.3 Memory Controller:
	4.2.2.4 Bus Controller:
	4.2.2.5  Widget

	4.2.3 JTAG Debug Port
	4.2.3.1 Sample Security Policy 1
	4.2.3.2  Sample Security Policy 2


	4.3 Framework Benefits, Advantages, and Value

	5  Revisiting CBEA Using the Framework
	5.1  Identify Hardware Components
	5.1.1 Synergistic Processor Element
	5.1.1.1 Synergistic Processor Unit
	5.1.1.2 Memory Flow Controller

	5.1.2 Element Interconnect Bus
	5.1.3 Cell Broadband Engine Interface Unit
	5.1.4 Memory Interface Controller
	5.1.5 Pervasive
	5.1.5.1 Serial Peripheral Interface
	5.1.5.2 Joint Test Action Group

	5.1.6 Hardware Component List

	5.2 Identify and Evaluate Information Flows
	5.2.1 Synergistic Processor Element
	5.2.1.1 Information Flows
	5.2.1.2 Safeguards

	5.2.2 Element Interconnect Bus
	5.2.2.1 Information Flows
	5.2.2.2 Safeguards

	5.2.3  Cell Broadband Engine Interface Unit
	5.2.3.1 Information Flows
	5.2.3.2  Safeguards

	5.2.4 Memory Interface Controller
	5.2.4.1  Information Flows
	5.2.4.2  Safeguards

	5.2.5 Pervasive
	5.2.5.1 Information Flows
	5.2.5.2 Safeguards


	5.3 Applying the Security Policy
	5.4 Conclusions
	5.5 Framework Enhancements

	6  Evaluating Freescale P4080 using the Framework
	6.1 Identify Hardware Components
	6.1.1 Processor Cores
	6.1.2 CoreNet
	6.1.3 DDR2/DDR3 SDRAM Controller
	6.1.4 Enhanced Local Bus Controller
	6.1.5 High-Speed Peripheral Interface Complex
	6.1.6 Data Path Acceleration Architecture:
	6.1.7 Real Time Debug:
	6.1.8 Hardware Component List

	6.2 Identify and Evaluate Information Flows
	6.2.1 Processor Core
	6.2.1.1 Information Flows
	6.2.1.2 Safeguards

	6.2.2 CoreNet Coherency Fabric
	6.2.2.1 Information Flows
	6.2.2.2 Safeguards

	6.2.3 CoreNet Coherency Cache
	6.2.3.1 Safeguards

	6.2.4 Enhanced Local Bus Controller
	6.2.4.1 Information Flows
	6.2.4.2 Safeguards

	6.2.5 Data Path Acceleration Architecture: Individual Components
	6.2.5.1 Information Flows
	6.2.5.2  Safeguards

	6.2.6 Data Path Acceleration Architecture: Grouped Components
	6.2.6.1 Information Flows
	6.2.6.2 Safeguards

	6.2.7 On-Chip Network: Individual Components
	6.2.7.1 Information Flows
	6.2.7.2 Safeguards

	6.2.8 On-Chip Network: Grouped Components
	6.2.8.1 Information Flows
	6.2.8.2 Safeguards

	6.2.9 Real Time Debug
	6.2.9.1 Information Flows
	6.2.9.2 Safeguards


	6.3 Applying the Security Policy
	6.4 Conclusions

	7  Evaluating Intel Nehalem Architecture Using the Framework
	7.1 Identify Hardware Components
	7.1.1 Processor Cores

	7.2 Identify and Evaluate Information Flows
	7.2.1 Processor Cores
	7.2.1.1 Information Flows
	7.2.1.2  Safeguards


	7.3 Applying the Security Policy
	7.4 Conclusion

	8  Conclusions and Future Work
	8.1 Conclusions
	8.2 Future Work
	8.3 Contributions

	9  Introduction
	9.1 Motivation
	9.2 Research Challenges
	9.3 Contributions
	9.4 Part III Overview

	10  Background
	10.1 MultiCore Architecture Terminology
	10.2 Overview of Multicore Processors Architectures
	10.3 Virtual Machine Monitor
	10.3.1 CPU Virtualization
	10.3.2 Memory Virtualization
	10.3.3 I/O Virtualization
	10.3.4 Interrupt Virtualization

	10.4 Related Work
	10.4.1 Previous Hypervisors
	10.4.2 Security Challenges in Multicore Systems
	10.4.3 Security Architecture Model


	11  Evaluation of Hardware Features for Security in Multicore Systems
	11.1 CPU
	11.1.1 Sensitive but Unprivileged Instructions

	11.2 Memory
	11.2.1 Extended Page Table and Nested Page Table
	11.2.2 Shared Memory

	11.3 I/O Devices
	11.4 External Interrupt
	11.5 Secure Bootup
	11.6 Virtualization of System Resources
	11.6.1 State of the Logical Processor
	11.6.2 Virtualization of System Facilities

	11.7 Hardware Virtualization Technology Summary

	12  A Lightweight Virtual Machine Monitor for Secure Analysis of Multicore Architectures
	12.1 Bootstrapping
	12.1.1 AP Booting Procedure

	12.2 Operating Modes
	12.3 Memory Layout
	12.3.1 Memory Layout in Single VM System
	12.3.2 Memory Layout in Multiple VM Systems

	12.4 IAVMM Paging System
	12.4.1 Host Page Tables
	12.4.2 Extended Page Table

	12.5 VM Launching Process
	12.5.1 VMM Setup
	12.5.2 Handling of Guest VM Launching

	12.6  Handling of VM Exits
	12.7 Summary

	13  Evaluation Experiments in Multicore Systems
	13.1 Evaluation of CBEA Processor Architectures
	13.1.1 A Security Review of the CBEA
	13.1.2 Evaluation of Shared DRAM System in CBEA
	13.1.3 Discussion

	13.2 Evaluation of Intel 64 Hardware Features based on IAVMM
	13.2.1 Systematic Evaluation
	13.2.1.1 IAVMM for Security Analysis of Bare Metal
	13.2.1.2 Lightweight

	13.2.2 Instruction Case Studies
	13.2.2.1  Sensitive but Unprivileged Instructions
	13.2.2.2 Undefined Instruction
	13.2.2.3 Bitmap

	13.2.3 Covert Channels Analysis
	13.2.4 Memory Access Discussion
	13.2.4.1 Guest OS trying to access host region
	13.2.4.2 Interference between VMMs

	13.2.5  System Registers Analysis
	13.2.5.1 Control Registers

	13.2.6 VM Exits

	13.3 Summary

	14  A Layered Framework for Secure Multicore Architectures
	14.1 Security Policy Terminology
	14.2 3-Level Security Framework
	14.3 Examination of Hardware-Level Security Mechanisms
	14.3.1 Secure Hardware Mechanisms of Intel VT-x

	14.4 VMM-Level Security Mechanisms
	14.5 Verification Experiments from User-level Security Mechanisms
	14.5.1 Access Control Security
	14.5.2 Protection Page Tables

	14.6 Summary

	15  Formalize Security Policy for Multicore Architectures
	15.1 Background
	15.1.1 Layer Assurance Architectures
	15.1.2 Security Architecture Models
	15.1.3 Perfect Security Property

	15.2 Formal Model of Virtual Machine Systems
	15.2.1 Formal Model of Virtual Machine Systems
	15.2.2 Event System Model

	15.3 Example Layered Assurance
	15.3.1 Hardware Layer
	15.3.2 VMM Layer
	15.3.3 User Layer
	15.3.4 More Specific Examples

	15.4 Summary

	16  Part III Conclusion and Future Work
	16.1 Conclusion
	16.1.1 Summary of Part III of this project

	16.2 Future Work

	17  Bibliography
	18 Acronym List
	Appendix A.  CBEA SPPORT DATA
	A.1 SPE MEMORY LOAD/STORE INSTRUCTIONS
	A.2 SPE CHANNELS
	A.3  SPE CONSTANT-FORMATION INSTRUCTIONS
	A.4 SPE INTEGER AND LOGICAL INSTRUCTIONS
	A.5 SPE HINT-FOR-BRANCH INSTRUCTIONS
	A.6 SPE SHIFT AND ROTATE INSTRUCTIONS
	A.7 SPE FLOATING-POINT INSTRUCTIONS

	Appendix B.  P4080 Support Data
	B.1 E500MC PROCESSOR INSTRUCTIONS
	B.1.1  Branch and Flow Instructions
	B.1.2 Floating-Point Instructions
	B.1.3 Floating-Point Status and Control Register Instructions
	B.1.4 Floating-Point Arithmetic Instructions
	B.1.5 Floating-Point Compare Instructions
	B.1.6 Floating-Point Rounding and Conversion Instructions
	B.1.7  Integer Instructions

	B.2 REGISTERS
	B.2.1 General Purpose Registers
	B.2.2 Floating-Point Registers
	B.2.3 Branch Registers
	B.2.4 Branch Unit Control and Status Register
	B.2.5  Hardware Implementation Dependent Register
	B.2.6  L1 Cache Registers
	B.2.7  L2 Cache Registers
	B.2.8 MMU Registers
	B.2.9 Performance Monitoring Registers


	Appendix C. List of Instructions that Cause VM Exits
	Appendix D.  Intel Instruction Summary
	Appendix E.  A List of Terminology Comparison between Intel and AMD
	Appendix F.  A List of Virtualized Resource



